加/减速状态下倾转旋翼飞行器动态过渡走廊研究-低空经济专刊

  • 王梓旭 ,
  • 李攀 ,
  • 沈俊彪 ,
  • 朱振华 ,
  • 陈仁良
展开
  • 1. 南京航空航天大学 直升机动力学全国重点实验室
    2. 南京航空航天大学

收稿日期: 2024-10-11

  修回日期: 2025-01-23

  网络出版日期: 2025-02-06

Dynamic conversion corridor of tiltrotor aircraft under accelerating and decelerating conditions

  • WANG Zi-Xu ,
  • LI Pan ,
  • SHEN Jun-Biao ,
  • ZHU Zhen-Hua ,
  • CHEN Ren-Liang
Expand

Received date: 2024-10-11

  Revised date: 2025-01-23

  Online published: 2025-02-06

摘要

电动垂直起降飞行器(eVTOL)的发展与低空经济的联系日益紧密,倾转旋翼构型愈发受到行业青睐。准确界定过渡走廊是确保此类构型飞行器安全过渡飞行的关键。传统过渡走廊通过求解不同旋翼倾转角下可稳态平飞的速度区间(静态过渡走廊)来确定,然而该方法难以反映飞行器在直升机与飞机模式之间构型与速度同步变化的动态过程,从而隐含安全风险。为此,基于倾转双旋翼机的非线性飞行动力学模型,制定了过渡走廊低速段和高速段的边界条件,系统分析了不同加速度和爬升/下降速度对动态过渡走廊的影响,并与静态过渡走廊进行了对比。结果表明,随着加速度增加,不同旋翼倾转角对应的最大飞行速度呈现线性下降,而最小飞行速度的减小幅度则随旋翼倾转角度减小而减缓。在加速斜爬升的特定飞行状态下,动态过渡走廊面积相较静态过渡走廊减少约52%。不同过渡路径的飞行仿真结果进一步表明,仅依赖静态过渡走廊设计路径可能带来飞行安全隐患,如功率超限和机翼失速等。基于此,本文提出将动态与静态过渡走廊的重叠区域作为路径设计的安全边界,以提高过渡飞行的安全性。

本文引用格式

王梓旭 , 李攀 , 沈俊彪 , 朱振华 , 陈仁良 . 加/减速状态下倾转旋翼飞行器动态过渡走廊研究-低空经济专刊[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31377

Abstract

The development of electric Vertical Take-Off and Landing (eVTOL) aircraft is increasingly linked to the low-altitude economy, with tiltrotor configurations gaining industry favor. Precisely defining the conversion corridor is key to ensuring the safe completion of transition flights for such configurations. Traditional conversion corridors are deter-mined by solving for speed ranges of steady-level flight at different rotor tilt angles (static conversion corridor). However, this method inadequately reflects the dynamic process where configuration and speed change synchronously between helicopter and airplane modes, posing safety risks. To address this issue, boundary conditions for both low-speed and high-speed segments of the conversion corridor are formulated based on a nonlinear flight dynamics model of a tiltrotor aircraft. The effects of different accelerations and climb/descent rates on the dynamic conversion corridor are systematically analyzed and compared with the static conversion corridor. Results show that as acceleration increases, the maximum flight speed corresponding to various rotor tilt angles decreases linearly, while the reduction in minimum flight speed slows as the rotor tilt angle decreases. In specific flight states involving accelerated climbing, the dynamic conversion corridor area is reduced by about 52% compared to the static conversion corridor. Flight simulation results of different transition paths further indicate that relying solely on static conversion corridor designs may introduce flight safety hazards such as power exceedance and wing stall. Consequently, this paper proposes using the overlapping region of dynamic and static conversion corridors as the safety boundary for path design, thereby improving the safety of transition flights.

参考文献

[1] 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 55-77.
DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 55-77 (in Chinese).
[2] UGWUEZE O, STATHEROS T, BROMFIELD M A, et al. Trends in eVTOL aircraft development: The concepts,enablers and challenges[C]// Proceedings of the AIAA Scitech 2023 Forum. Reston: AIAA, 2023: 1-13.
[3] KADHIRESAN A R, DUFFY M J. Conceptual design and mission analysis for eVTOL urban air mobility flight vehicle configurations[C]// Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019: 1-19.
[4] 刘佳豪, 李高华, 王福新. 倾转过渡状态旋翼-机翼气动干扰特性[J]. 航空学报, 2022, 43(12): 208-219.
LIU J H, LI G H, WANG F X. Rotor-wing aerodynam-ic interference characteristics in conversion mode [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 208-219 (in Chinese).
[5] QU S, SU W H, HE T Y. Mixed model predictive and data-driven control approach for tilt-rotor eVTOL air-craft[C]// Proceedings of the AIAA SCITECH 2024 Fo-rum. Orlando, FL: AIAA, 2024: 1-10.
[6] 严旭飞, 陈仁良. 倾转旋翼机动态倾转过渡过程的操纵策略优化[J]. 航空学报, 2017, 38(7): 59-69.
YAN X F, CHEN R L. Control strategy optimization of dynamic conversion procedure of tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 59-69 (in Chinese).
[7] 曹芸芸, 陈仁良. 倾转旋翼飞行器发动机短舱倾转角度-速度包线分析[J]. 航空动力学报, 2011, 26(10): 2174-2180.
CAO Y Y, CHEN R L. Investigation on nacelle of con-version envelope analysis method of tiltrotor aircraft[J]. Journal of Aerospace Power, 2011, 26(10): 2174-2180 (in Chinese).
[8] PADFIELD G D. Helicopter flight dynamics including a treatment of tilt-rotor aircraft[M]. 3rd ed. New York: John Wiley & Sons, 2018.
[9] EASTBURG S R. Natops flight manual navy model MV-22B tiltrotor: A1-V22AB-NFM-000[R]. Patuxent River, Naval Air Systems Command, 2006.
[10] DANIEL C D, RONALD G E, LAUREL G S. The XV-15 tilt rotor research aircraft: NASA-TM-81244[R]. St. Louis, Missouri, NASA, 1980.
[11] Tischler M B. Frequency-response identification of XV-15 tilt-rotor aircraft dynamics: AD-A188-345[R]. Mof-fett Field. California, NASA, 1987.
[12] LEBACQZ J V, SCOTT B C. Ground-simulation inves-tigation of VTOL airworthiness criteria for terminal area operations[J]. Journal of Guidance, Control, and Dynam-ics, 1985, 8(6): 761-767.
[13] MAISEL M D, GIULIANETTI D J, DUGAN D C. The history of the XV-15 tilt rotor research aircraft: from concept to flight: NASA SP-2000-4517[R]. Washing-ton D.C., NASA Ames Research Center, 2000.
[14] MAISEL M D, BORGMAN D C, FEW D D. Tilt rotor research aircraft familiarization document: TM-X-62-407[R]. Moffett Field. California, NASA, 1987.
[15] WESLEY A, ANTONIO F, NICHOLAS B. Low-order aeromechanics of tilt-rotor helicopters[C]// Proceedings of the 44th European Rotorcraft Forum, Delft, The Neth-erlands, European Helicopter Society, 2018: 39-53.
[16] NARRAMORE J C. Flaperon system for tilt rotor wings: US005094412A[P]. 1992-03-10.
[17] 潘浙平. 倾转四旋翼飞行器倾转过渡走廊计算方法研究[D]. 南京: 南京航空航天大学, 2019: 60-70.
PAN Z P. Investigation on conversion corridor analysis method of quad tilt rotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 60-70 (in Chinese).
[18] CHOI S, KANG Y, CHANG S, et al. Development and conversion flight test of a small tiltrotor unmanned aerial vehicle[J]. Journal of Aircraft, 2010, 47(2):730-732.
[19] HYUN J, JANG M, NGUYEN T A. Transition control planning and optimization for a boxed-wing eVTOL tiltrotor vehicle using trim analysis [C]// 2023 Interna-tional Conference on Unmanned Aircraft Systems, War-saw, Poland, IEEE, 2023: 1128-1135.
[20] 俞志明, 陈仁良, 孔卫红. 倾转四旋翼飞行器倾转过渡走廊分析方法[J]. 北京航空航天大学学报, 2020, 46(11): 2106-2113.
YU Z M, CHEN R L, KONG W H. Analysis method for conversion corridor of quad tilt rotor aircraft[J]. Journal of Beijing University of Aeronautics and Astro-nautics, 2020, 46(11): 2106-2113 (in Chinese).
[21] HWANG, S J; KIM, Y S, LEE M K. Tilt rotor-wing concept for multi-purpose VTOL UAV[J]. International Journal of Aeronautical and Space Sciences, 2007,8(1): 87-94.
[22] FERGUSON S W. A mathematical model for real time flight simulation of a generic tilt-rotor aircraft: CR-166536[R]. Washington, D.C., NASA, 1988.
[23] PITT D M, PETER D A. Theoretical prediction of dy-namic inflow derivatives[J]. Vertica, 1981, 5(1): 21-34.
[24] WEIBERG M, MAISEL J A. Wind-tunnel tests of the XV-15 tilt rotor aircraft: TM-81177[R]. Washing-ton D.C., NASA, 1980.
[25] 王梓旭, 李攀, 王冰, 等. 倾转旋翼飞行器运动稳定性变化规律及其影响机理[J/OL]. 航空动力学报, (2024-03-05) [2024-10-05]. https://doi.org/10.13224/j.cnki.jasp.20230755.
WANG Z X, LI P, WANG B, et al. Study on the variation of tilt-rotor aircraft motion stability and its influence mechanism[J/OL]. Journal of Aerospace Power, (2024-03-05) [2024-10-05]. https://doi.org/10.13224/j.cnki.jasp.20230755.
[26] FERGUSON S W. Development and validation of a simulation for a generic tlit-rotor aircraft: CR-166537[R]. Washington D.C., NASA, 1989.
[27] MARR R L, RODERICK W E B. Handling qualities evaluation of the XV-15 tilt rotor aircraft[J]. Journal of the American Helicopter Society, 1975, 20(2): 23-33.
文章导航

/