[1]韩忠华, 乔建领, 丁玉临, 王刚, 宋笔锋, 宋文萍.新一代环保型超声速客机气动相关关键技术与研究进展[J].空气动力学学报, 2019, 37(04):620-635
[2]HAN Z H, QIAO J L, DING Y L, et al.Key technol-ogies for next-generation environmentally- friendly super-sonic transport aircraft: a review of recent progress[J].Acta Aerodynamica Sinica, 2019, 37(4):620-635
[3]韩忠华, 钱战森, 乔建领.声爆预测与低声爆设计方法[M]. 北京: 科学出版社, 2022:1-3.
[4]HAN Z H, QIAN Z S, QIAO J L.Prediction of sonic boom and design method of low sonic boom[M]. Beijing: Science Press, 2022: 7-8. (in Chinese).
[5]VERMEERSCH O, YOSHIDA K, UEDA Y, et al.Nat-ural laminar flow wing for supersonic conditions: Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91
[6]TOKUGAWA N, YOSHIDA K.Transition Detection on Supersonic Natural Laminar Flow Wing in the Flight[C]. 24th AIAA Applied Aerodynamics Confer-ence, 2006. AIAA-2006-3165.
[7]TOKUGAWA N, KWAK D Y, YOSHIDA K, et al.Transition Measurement of Natural Laminar Flow Wing on Supersonic Experimental Airplane NEXST-1[J].Journal of Aircraft, 2008, 45(5):1495-1504
[8]YOSHIDA K.Supersonic Drag Reduction Technolo-gy in the Scaled Supersonic Experimental Airplane Project by JAXA[J].Progress in Aerospace Sciences, 2009, 45(4-5):124-146
[9]UEDA Y, YOSHIDA K, MATSUSHIMA K, et al.Su-personic natural-laminar-flow wing-design concept at high Reynolds number conditions[J].AIAA Jour-nal, 2014, 52(6):1294-1306
[10]ISHIKAWA H, UEDA Y, TOKUGAWA N.Natural Laminar Flow Wing Design for a Low-Boom Super-sonic Aircraft[C]. 55th AIAA Aerospace Sciences Meeting, 2017. AIAA-2017-1860.
[11]TRAORé A, Lemée P.Laminar Design for Supersonic Civil Transport[R]. Aerodynamic Drag Reduction Technologies. Springer Berlin Heidelberg, 2001.
[12]IULIANO E, DIN I S E, DONELLI R, et al.Natural Laminar Flow Design of a Supersonic Transport Jet Wing Body[C]. 47th AIAA Aerospace Sciences Meet-ing including The New Horizons Forum and Aero-space Exposition. 2009. AIAA-2009-1279.
[13]IULIANO E.Design of a Supersonic Natural Laminar Flow Wing-Body[J]. Journal of Aircraft, 2011, 48(4); 1147-1162.
[14]MICHELLE N L, RICHARD L C.Expanding the Natural Laminar Flow Boundary for Supersonic Transports[C]. 34th AIAA Applied Aerodynamics Conference, 2016. AIAA-2016-4327.
[15]MICHAEL D B, RICHARD L, et al.Progress Towards the Design of a Natural Laminar Flow Wing for a Low Boom Concept using CDISC. AIAA SCITECH 2024 Forum, Jan. 2024.
[16]聂晗, 宋文萍, 韩忠华等.面向超声速民机层流机翼设计的转捩预测方法[J].航空学报, 2022, 43(11):171-189
[17]NIE H, SONG W P, HAN Z H, et al.Automatic transition prediction for natural-laminar-flow wing design of supersonic transports[J].Acta Aeronautica et Astronautica Sinica, 2022, 43(9):626342-
[18]NIE H, SONG W P, HAN Z H, ZHENG K F, Attenua-tion of boundary-layer instabilities for natural laminar flow design on supersonic highly swept wings.Chi-nese Journal of Aeronautics, 2024. (Published Online)
[19]袁吉森, 孙爵, 李玲玉, 于晟浩, 聂晗, 高亮杰, 韩忠华, 钱战森.超声速飞机层流布局设计与评估技术进展[J].航空学报, 2022, 43(11):526316-
[20]YUAN J S, SUN J, LI Y L, NIE H, GAO L J, HAN Z H, QIAN Z S.Progress of supersonic aircraft laminar flow layout design and evaluation technologies. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526316. (in Chinese)
[21]YUAN J S, YU S H, GAO L J, QIAN Z S.Measure-ment and Identification of Supersonic Stationary Crossflow Waves Based on Sublimation Method[J].AIAA Journal, 2023, 61(6):2369-2380
[22]JONES L B.Lower Bounds for Sonic Bangs[J].The Aeronautical Journal, 1961, 65(606):433-436
[23]JONES L B.Lower Bounds for Sonic Bangs in The far-field[J].The Aeronautical Quarterly, 1967, 18(1):1-21
[24]JONES L B.Lower Bounds for The Pressure Jump of The Bow Shock of A Supersonic Transport[J].The Aeronautical Quarterly, 1970, 21(1):1-17
[25]GEORGE A R.Lower Bounds for sonic-booms In The Midfield[J].AIAA Journal, 1969, 7(8):1542-1545
[26]GEORGE A R, Seebass R.sonic-boom Minimization Including Both Front And Rear Shocks[J].AIAA Journal, 1971, 9(10):2091-2093
[27]SEEBASS R, GEORGE A R.sonic-boom Minimiza-tion[J].The Journal of the Acoustical Society of America, 1972, 51(2C):686-694
[28]DARDEN C M.Sonic-Boom Minimization With Nose-Bluntness Relaxation: NASA-TP-1438[R]. Hampton, VA: NASA, 1979.
[29]MINELLI A, et al.Inverse Design Approach for Low-Boom Supersonic Configurations[J]. AIAA Journal, 2014, Vol. 52, No. 10, pp. 2198–2212.
[30]PLOTKIN K, RALLABHANDI S.K, LI W. General-ized Formulation and Extension of sonic-boom Min-imization Theory for Front And Aft Shaping: AIAA-2009-1052[R]. Reston, VA: AIAA, 2009.
[31]HAAS A, KROO I.A Multi-Shock Inverse Design Method for Low-Boom Supersonic Aircraft: AIAA-2010-0843[R]. Reston, VA: AIAA, 2010.
[32]LI W, SHIELDS E, Geiselhart K.Mixed-Fidelity Ap-proach for Design of Low-Boom Supersonic Air-craft[J].Journal of Aircraft, 2011, 48(4):1131-1135
[33]LI W, RALLABHANDI S K.Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equiva-lent-Area Targets[J].Journal of Aircraft, 2014, 51(1):29-36
[34]DING Y L, HAN Z H, et al.Inverse Design Method for Low-Boom Supersonic Transport with Lift Con-straint[J].AIAA Journal, 2023, 61(7):2840-2853
[35]PARK M A, CARTER M B.Low-Boom Demonstrator Near-Field Summary for the Third AIAA sonic-boom Prediction Workshop[J].Journal of Aircraft, 2022, 59(3):563-577
[36]QIAO J L, HAN Z H, SONG W P, et al.Development of sonic-boom Prediction Code for Supersonic Trans-ports Based On Augmented Burgers Equation: AIAA-2019-3571[R]. Reston, VA: AIAA, 2019.
[37]QIAO J L, HAN Z H, ZHANG L W, et al.Far-Field sonic-boom Prediction Considering Atmospheric Tur-bulence Effects-An Improved Approach[J].Chinese Journal of Aeronautics, 2022, 35(9):208-225
[38]STEVENS S S.Perceived Level of Noise by Mark VII and Decibels (E)[J].The Journal of the Acoustical So-ciety of America, 1972, 51(2B):575-601
[39]MEREDITH K B, DAHLIN J A, GRAHAM D H, et al.Computational fluid dynamics comparison and flight test measurement of F-5E off-body pressures. 43rd AIAA aerospace sciences meeting and exhibit; 2005 Jan 10-13; Reno, NV. Reston: AIAA; 2005.
[40]RALLABHANDI S.K. Advanced sonic-boom Predic-tion Using the Augmented Burgers Equation[J].Jour-nal of Aircraft, 2011, 48(4):1245-1253
[41]WHITHAM G B.The Flow Pattern of A Supersonic Projectile[J].Communications On Pure and Applied Mathematics, 1952, 5(3):301-348
[42]WALKDEN F.The Shock Pattern of A Wing-Body Combination,Far From the Flight Path[J].The Aero-nautical Quarterly, 1958, 9(2):164-194
[43]GEORGE A R.Reduction of sonic-boom by azimuth-al redistribution of overpressure[J].AIAA journal, 1969, 7(2):291-298
[44]PAGE J A, PLOTKIN K.An efficient method for in-corporating computational fluid dynamics into sonic-boom prediction[C]// 9th Applied Aerodynamics Con-ference, Baltimore, MD.1991
[45]PLOTKIN K.sonic-boom shaping in three dimen-sions[C]//15th AIAA/CEAS Aeroacoustics Conference. Miami, FL. 2009.
[46]KANAMORI M, HASHIMOTO A, TAKAHASHI T, et al.Improvement of near-field waveform from super-sonic vehicle using multipole analysis[C]// Proceed-ings of the 49th Fluid Dynamics Conference, Tokyo. 2013.
[47]SAITO Y, TAKAHIRO U, MIYAKOSHI K, et al.son-ic-boom Estimation using the Multipole Method for Free Flight Experiments[C]// 52nd Aerospace Scienc-es Meeting, National Harbor, Maryland. 2014.
[48]丁玉临,韩忠华,乔建领,等.超声速飞机近场声爆快速预测软件FA-Boom(授权号2021SR1435201)
[49]KULFAN B M.A Universal parametric geometry representation method-“CST” [C]. AIAA-2007-62, 2007.
[50]HAN Z H.SURROOPT: A generic surrogate-based optimization code for aerodynamic and multidiscipli-nary design. In Proceedings of the 30th Congress of the International Council of the Aeronautical Sciences, DCC, Daejeon, Korea, 25-30 September 2016.