考虑全机声爆特性的超声速自然层流机翼设计方法

  • 郑可风 ,
  • 宋文萍 ,
  • 聂晗 ,
  • 丁玉临 ,
  • 乔建领 ,
  • 陈晴 ,
  • 王奕衡 ,
  • 宋科 ,
  • 张科施 ,
  • 韩忠华
展开
  • 1. 西北工业大学
    2. 西北工业大学航空学院
    3.

收稿日期: 2024-09-18

  修回日期: 2025-01-09

  网络出版日期: 2025-01-10

基金资助

考虑声爆约束的超声速自然层流机翼设计方法;针对全声爆毯的超声速民机低声爆多学科优化设计方法研究

Natural Laminar Flow Wing Design Method for Supersonic Transport Aircraft Considering Low Sonic-boom Requirement

  • ZHENG Ke-Feng ,
  • SONG Wen-Ping ,
  • NIE Han ,
  • DING Yu-Lin ,
  • QIAO Jian-Ling ,
  • CHEN Qing ,
  • WANG Yi-Heng ,
  • SONG Ke ,
  • ZHANG Ke-Shi ,
  • HAN Zhong-Hua
Expand

Received date: 2024-09-18

  Revised date: 2025-01-09

  Online published: 2025-01-10

摘要

摘 要:低阻/低声爆设计是超声速民机重返蓝天并实现持续商业运营的关键技术之一。对于超声速民机来说,自然层流机翼技术的减阻潜力已得到初步验证,然而如何在全机低声爆约束下开展自然层流机翼设计仍需进一步研究。为此,本文首先研究了对自然层流设计起决定作用的机翼压力分布特征对全机声爆特性的影响,进而提出了考虑全机声爆特性的超声速自然层流机翼设计方法。首先,分析了机翼压力分布变化对声爆等效截面积分布以及声爆波形的影响。结果表明,在经过低声爆设计的构型上,改变机翼压力分布主要导致全机轴向升力分布的变化,并破坏了原构型的具有低声爆特征的激波-膨胀波系,进而使地面声爆增加。基于上述发现,发展了考虑全机声爆特性的超声速自然层流机翼设计方法,该方法分三步:第一步,开展低声爆设计以确定初始构型的布局形式与机身形状;第二步,开展多轮次机翼压力梯度反设计以获得自然层流减阻所需的压力分布;第三步,对机身及平尾/垂尾开展多轮次低声爆修形设计,补偿机翼压力分布改变带来的声爆特性变化,降低全机声爆强度。采用所提出的方法在一个30吨级超声速民机方案上开展自然层流机翼设计,设计方案在维持良好低声爆特性(地面声爆强度为81.7PLdB)的同时,其机翼上表面可以维持33%的自然层流范围,粘性阻力较基准下降了5.2%,验证了本文方法的有效性。

本文引用格式

郑可风 , 宋文萍 , 聂晗 , 丁玉临 , 乔建领 , 陈晴 , 王奕衡 , 宋科 , 张科施 , 韩忠华 . 考虑全机声爆特性的超声速自然层流机翼设计方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31214

Abstract

Low drag and low sonic-boom design technologies both play significant roles in the re-introduction and sustainable commercial operations of next-generation supersonic transport aircraft (SST). Although the potential of natural laminar flow wing to reduce the drag of SST has been verified, further research is still needed to achieve laminar flow wing design under the constraint of low sonic-boom intensity. Therefore, considering that the laminar flow region of the wing is determined by the wing pressure distribution, the influence of wing pressure distribution on the sonic-boom characteristics of the aircraft is first investigated. A method for supersonic natural laminar flow wing design considering low sonic-boom intensity requirement of the aircraft is then proposed. Firstly, the influence of wing pressure distribution on the equivalent areas and sonic-boom waveform of the aircraft is analyzed. Results indicate that on a low-boom configuration, changing the wing pressure distribution mainly leads to changes in the axial lift distribution of the aircraft. Also, the original configuration's shock-expansion waves that feature low sonic boom characteristics are also affected, leading to the increase of the sonic boom intensity. Based on these discoveries, a three-steps method for supersonic natural laminar flow wing design considering the sonic-boom constraint of the aircraft is proposed. The first step is to conduct low boom design for determining the layout of the configuration. The second step conducts multiple rounds of pressure gradient inverse design on the wing to obtain the pressure distribution required by natural laminar flow. The third step carries out multiple rounds of low sonic boom design on the fuselage, horizontal tail and vertical tail to compensate for changes in sonic boom characteristics caused by changes in wing pressure distribution. The proposed method is applied to achieve natural laminar flow on a wing of a 30-ton low boom supersonic civil aircraft configuration. The designed configuration not only maintains low sonic-boom characteristics (sonic boom intensity equals 81.7 PLdB) but also achieves 33% natural laminar flow on the upper surface of the wing, achieving a 5.2% reduction in friction drag compared to the baseline configuration. This result verifies the effectiveness of the proposed method.

参考文献

[1]韩忠华, 乔建领, 丁玉临, 王刚, 宋笔锋, 宋文萍.新一代环保型超声速客机气动相关关键技术与研究进展[J].空气动力学学报, 2019, 37(04):620-635
[2]HAN Z H, QIAO J L, DING Y L, et al.Key technol-ogies for next-generation environmentally- friendly super-sonic transport aircraft: a review of recent progress[J].Acta Aerodynamica Sinica, 2019, 37(4):620-635
[3]韩忠华, 钱战森, 乔建领.声爆预测与低声爆设计方法[M]. 北京: 科学出版社, 2022:1-3.
[4]HAN Z H, QIAN Z S, QIAO J L.Prediction of sonic boom and design method of low sonic boom[M]. Beijing: Science Press, 2022: 7-8. (in Chinese).
[5]VERMEERSCH O, YOSHIDA K, UEDA Y, et al.Nat-ural laminar flow wing for supersonic conditions: Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91
[6]TOKUGAWA N, YOSHIDA K.Transition Detection on Supersonic Natural Laminar Flow Wing in the Flight[C]. 24th AIAA Applied Aerodynamics Confer-ence, 2006. AIAA-2006-3165.
[7]TOKUGAWA N, KWAK D Y, YOSHIDA K, et al.Transition Measurement of Natural Laminar Flow Wing on Supersonic Experimental Airplane NEXST-1[J].Journal of Aircraft, 2008, 45(5):1495-1504
[8]YOSHIDA K.Supersonic Drag Reduction Technolo-gy in the Scaled Supersonic Experimental Airplane Project by JAXA[J].Progress in Aerospace Sciences, 2009, 45(4-5):124-146
[9]UEDA Y, YOSHIDA K, MATSUSHIMA K, et al.Su-personic natural-laminar-flow wing-design concept at high Reynolds number conditions[J].AIAA Jour-nal, 2014, 52(6):1294-1306
[10]ISHIKAWA H, UEDA Y, TOKUGAWA N.Natural Laminar Flow Wing Design for a Low-Boom Super-sonic Aircraft[C]. 55th AIAA Aerospace Sciences Meeting, 2017. AIAA-2017-1860.
[11]TRAORé A, Lemée P.Laminar Design for Supersonic Civil Transport[R]. Aerodynamic Drag Reduction Technologies. Springer Berlin Heidelberg, 2001.
[12]IULIANO E, DIN I S E, DONELLI R, et al.Natural Laminar Flow Design of a Supersonic Transport Jet Wing Body[C]. 47th AIAA Aerospace Sciences Meet-ing including The New Horizons Forum and Aero-space Exposition. 2009. AIAA-2009-1279.
[13]IULIANO E.Design of a Supersonic Natural Laminar Flow Wing-Body[J]. Journal of Aircraft, 2011, 48(4); 1147-1162.
[14]MICHELLE N L, RICHARD L C.Expanding the Natural Laminar Flow Boundary for Supersonic Transports[C]. 34th AIAA Applied Aerodynamics Conference, 2016. AIAA-2016-4327.
[15]MICHAEL D B, RICHARD L, et al.Progress Towards the Design of a Natural Laminar Flow Wing for a Low Boom Concept using CDISC. AIAA SCITECH 2024 Forum, Jan. 2024.
[16]聂晗, 宋文萍, 韩忠华等.面向超声速民机层流机翼设计的转捩预测方法[J].航空学报, 2022, 43(11):171-189
[17]NIE H, SONG W P, HAN Z H, et al.Automatic transition prediction for natural-laminar-flow wing design of supersonic transports[J].Acta Aeronautica et Astronautica Sinica, 2022, 43(9):626342-
[18]NIE H, SONG W P, HAN Z H, ZHENG K F, Attenua-tion of boundary-layer instabilities for natural laminar flow design on supersonic highly swept wings.Chi-nese Journal of Aeronautics, 2024. (Published Online)
[19]袁吉森, 孙爵, 李玲玉, 于晟浩, 聂晗, 高亮杰, 韩忠华, 钱战森.超声速飞机层流布局设计与评估技术进展[J].航空学报, 2022, 43(11):526316-
[20]YUAN J S, SUN J, LI Y L, NIE H, GAO L J, HAN Z H, QIAN Z S.Progress of supersonic aircraft laminar flow layout design and evaluation technologies. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526316. (in Chinese)
[21]YUAN J S, YU S H, GAO L J, QIAN Z S.Measure-ment and Identification of Supersonic Stationary Crossflow Waves Based on Sublimation Method[J].AIAA Journal, 2023, 61(6):2369-2380
[22]JONES L B.Lower Bounds for Sonic Bangs[J].The Aeronautical Journal, 1961, 65(606):433-436
[23]JONES L B.Lower Bounds for Sonic Bangs in The far-field[J].The Aeronautical Quarterly, 1967, 18(1):1-21
[24]JONES L B.Lower Bounds for The Pressure Jump of The Bow Shock of A Supersonic Transport[J].The Aeronautical Quarterly, 1970, 21(1):1-17
[25]GEORGE A R.Lower Bounds for sonic-booms In The Midfield[J].AIAA Journal, 1969, 7(8):1542-1545
[26]GEORGE A R, Seebass R.sonic-boom Minimization Including Both Front And Rear Shocks[J].AIAA Journal, 1971, 9(10):2091-2093
[27]SEEBASS R, GEORGE A R.sonic-boom Minimiza-tion[J].The Journal of the Acoustical Society of America, 1972, 51(2C):686-694
[28]DARDEN C M.Sonic-Boom Minimization With Nose-Bluntness Relaxation: NASA-TP-1438[R]. Hampton, VA: NASA, 1979.
[29]MINELLI A, et al.Inverse Design Approach for Low-Boom Supersonic Configurations[J]. AIAA Journal, 2014, Vol. 52, No. 10, pp. 2198–2212.
[30]PLOTKIN K, RALLABHANDI S.K, LI W. General-ized Formulation and Extension of sonic-boom Min-imization Theory for Front And Aft Shaping: AIAA-2009-1052[R]. Reston, VA: AIAA, 2009.
[31]HAAS A, KROO I.A Multi-Shock Inverse Design Method for Low-Boom Supersonic Aircraft: AIAA-2010-0843[R]. Reston, VA: AIAA, 2010.
[32]LI W, SHIELDS E, Geiselhart K.Mixed-Fidelity Ap-proach for Design of Low-Boom Supersonic Air-craft[J].Journal of Aircraft, 2011, 48(4):1131-1135
[33]LI W, RALLABHANDI S K.Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equiva-lent-Area Targets[J].Journal of Aircraft, 2014, 51(1):29-36
[34]DING Y L, HAN Z H, et al.Inverse Design Method for Low-Boom Supersonic Transport with Lift Con-straint[J].AIAA Journal, 2023, 61(7):2840-2853
[35]PARK M A, CARTER M B.Low-Boom Demonstrator Near-Field Summary for the Third AIAA sonic-boom Prediction Workshop[J].Journal of Aircraft, 2022, 59(3):563-577
[36]QIAO J L, HAN Z H, SONG W P, et al.Development of sonic-boom Prediction Code for Supersonic Trans-ports Based On Augmented Burgers Equation: AIAA-2019-3571[R]. Reston, VA: AIAA, 2019.
[37]QIAO J L, HAN Z H, ZHANG L W, et al.Far-Field sonic-boom Prediction Considering Atmospheric Tur-bulence Effects-An Improved Approach[J].Chinese Journal of Aeronautics, 2022, 35(9):208-225
[38]STEVENS S S.Perceived Level of Noise by Mark VII and Decibels (E)[J].The Journal of the Acoustical So-ciety of America, 1972, 51(2B):575-601
[39]MEREDITH K B, DAHLIN J A, GRAHAM D H, et al.Computational fluid dynamics comparison and flight test measurement of F-5E off-body pressures. 43rd AIAA aerospace sciences meeting and exhibit; 2005 Jan 10-13; Reno, NV. Reston: AIAA; 2005.
[40]RALLABHANDI S.K. Advanced sonic-boom Predic-tion Using the Augmented Burgers Equation[J].Jour-nal of Aircraft, 2011, 48(4):1245-1253
[41]WHITHAM G B.The Flow Pattern of A Supersonic Projectile[J].Communications On Pure and Applied Mathematics, 1952, 5(3):301-348
[42]WALKDEN F.The Shock Pattern of A Wing-Body Combination,Far From the Flight Path[J].The Aero-nautical Quarterly, 1958, 9(2):164-194
[43]GEORGE A R.Reduction of sonic-boom by azimuth-al redistribution of overpressure[J].AIAA journal, 1969, 7(2):291-298
[44]PAGE J A, PLOTKIN K.An efficient method for in-corporating computational fluid dynamics into sonic-boom prediction[C]// 9th Applied Aerodynamics Con-ference, Baltimore, MD.1991
[45]PLOTKIN K.sonic-boom shaping in three dimen-sions[C]//15th AIAA/CEAS Aeroacoustics Conference. Miami, FL. 2009.
[46]KANAMORI M, HASHIMOTO A, TAKAHASHI T, et al.Improvement of near-field waveform from super-sonic vehicle using multipole analysis[C]// Proceed-ings of the 49th Fluid Dynamics Conference, Tokyo. 2013.
[47]SAITO Y, TAKAHIRO U, MIYAKOSHI K, et al.son-ic-boom Estimation using the Multipole Method for Free Flight Experiments[C]// 52nd Aerospace Scienc-es Meeting, National Harbor, Maryland. 2014.
[48]丁玉临,韩忠华,乔建领,等.超声速飞机近场声爆快速预测软件FA-Boom(授权号2021SR1435201)
[49]KULFAN B M.A Universal parametric geometry representation method-“CST” [C]. AIAA-2007-62, 2007.
[50]HAN Z H.SURROOPT: A generic surrogate-based optimization code for aerodynamic and multidiscipli-nary design. In Proceedings of the 30th Congress of the International Council of the Aeronautical Sciences, DCC, Daejeon, Korea, 25-30 September 2016.
文章导航

/