折叠变体跨介质水空两栖航行器设计

  • 李霓 ,
  • 白浩 ,
  • 罗炜佳 ,
  • 廖飞 ,
  • 董长印
展开
  • 1. 西北工业大学
    2. 中国空气动力研究与发展中心

收稿日期: 2024-11-04

  修回日期: 2024-12-23

  网络出版日期: 2024-12-30

基金资助

国家自然科学基金;国家自然科学基金;国家自然科学基金

Design of a Foldable Cross-Medium Amphibious Aerial and Underwater Vehicle

  • LI Ni ,
  • BAI Hao ,
  • LUO Wei-Jia ,
  • LIAO Fei ,
  • DONG Chang-Yin
Expand

Received date: 2024-11-04

  Revised date: 2024-12-23

  Online published: 2024-12-30

摘要

水空跨介质航行器具备在水空两种介质中的运动能力,因此可在海洋领域的监测、救援、资源勘探、环境保护等方面发挥重要作用,具有广泛的应用前景。本文设计了具有可折叠机臂的回转体结构旋翼航行器——代号为“飞翊”,其拥有水下潜行、水面航行和空中飞行三种工作模式,并能进行多次水空跨越。在总体设计方面,“飞翊”采用回转体设计,以减少其在水中运动阻力和缩小回收储藏空间;采用头部四旋翼和尾部四推进器的动力布局分别实现控制和水下的姿态和运动控制;为了同时保证水中航行效率及空中飞行效率,“飞翊”在水中呈水平姿态航行,在空中呈直立姿态飞行,介质跨越过程采用推进器组合控制进行姿态调整。最后,研制原理样机并进行了水下航行、水面航行、跨介质、空中飞行等多模态验证。试验表明“飞翊”飞行高度为30m,高度控制精度为±0.1m,角度控制精度为±0.5°,相较于已有的航行器,在高度与控制精度方面达到了较高的水平。

本文引用格式

李霓 , 白浩 , 罗炜佳 , 廖飞 , 董长印 . 折叠变体跨介质水空两栖航行器设计[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31491

Abstract

Cross-medium vehicles capable of operating in both aquatic and aerial environments have significant potential for applications in ocean monitoring, rescue operations, resource exploration, and environmental protection, making them valuable in a wide range of fields. This paper presents the design of a rotary-wing vehicle with foldable arms, codenamed "Feiyi," which can operate in three distinct modes: underwater cruising, surface navigation, and aerial flight, with the ability to transition between air and water multiple times. In terms of overall design, "Feiyi" utilizes a rotary body structure to minimize hydrodynamic resistance during underwater motion and to reduce storage space when retracted. The vehicle features a propulsion system with four rotors at the front for flight control and four thrust-ers at the rear for underwater attitude and movement control. To optimize efficiency in both water and air, "Feiyi" adopts a horizontal posture for underwater navigation and a vertical posture for aerial flight, with attitude adjustments during medium transitions managed by a combination of thrusters. A prototype was developed and tested in various operational modes, including underwater navigation, surface cruising, cross-medium transitions, and aerial flight. The experiments demonstrated that "Feiyi" can achieve a flight altitude of 30 meters with a height control precision of ±0.1 meters and an angular control precision of ±0.5°, representing a significant improvement in control accuracy com-pared to existing vehicles.

参考文献

[1]丁文俊,柴亚军,侯冬冬等.AUV&UAV跨域协同搜索与跟踪路径规划[J].航空学报,2023,44(21):213-224.
Ding Wenjun, Chai Yajun, Hou Dongdong, et al. AUV&UAV cross domain collaborative search and tracking path planning [J]. Journal of Aeronautics, 2023, 44 (21): 213-224.
[2]杨兴帮,梁建宏,文力,等.水空两栖跨介质无人飞行器研究现状[J].机器人,2018,40(01):102-114.DOI:10.13973/j.cnki.robot.170241.
YANG Xingbang, LIANG Jianhong, WEN Li, WANG Tianmiao. Research Status of Water-Air Amphibious Trans-media Unmanned Vehicle [J]. ROBOT, 2018, 40(1): 102-114. DOI: 10.13973/j.cnki.robot.170241
[3]DREWS P L,NETO A A, CAMPOS M F. Hybrid Unmanned Aerial Underwater Vehicle: Modeling and simulation [C].2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014: 4637-4642.
[4]ALZU'BI H,AKINSANYA O,KAJA N, et al. Evaluation of an aerial quadcopter power-plant for underwater operation [C]. Proceedings of 2015 10th International Symposium on Mechatronics and its Applications (ISMA). Sharjah:IEEE,2015.DOI:10.1109/ ISMA.2015.7373488.
[5]BERSHADSKY D,HAVILAND S,VALDEZ P E, et al. Design considerations of submersible unmanned flying vehicle for communications and underwater sampling [C].OCEANS 2016 MTS/IEEE Monterey,2016:1-8.
[6]MA Z C, FENG J F,YANG J. Research on vertical air-water trans-media control of Hybrid Unmanned Aerial Underwater Vehicles based on adaptive sliding mode dynamical surface control [J]. International Journal of Advanced Robotic Systems,2018,15(2):1- 10.
[7]LU D,XIONG C K,LYU B Z, et al. Multi-Mode Hybrid Aerial Underwater Vehicle with Extended Endurance [C]. 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO),2018:1-7.
[8]LU D.XIONG C K,ZENG Z, et al. A Multimodal Aerial Underwater Vehicle with Extended Endurance and Capabilities [C]. 2019 International Conference on Robotics and Automation (ICRA), 2019:4674-4680.
[9]LU D,XIONG C K,ZHOU H, et al. Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle [J]. Ocean Engineering, 2020, 219:108324.
[10]LYU C X,LU D,X
IONG C K, et al. Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments [J]. Journal of Field Robotics, 2022(5):39.
[11]张硕,张树新,代季鹏.小型跨介质无人机快速水空过渡设计与试验[J].飞行力学,2021,39(05):77-81+94.DOI:10.13645/j.cnki.f.d.20210611.011.
Zhang Shuo, Zhang Shuxin, Dai Jipeng. Design and testing of fast water air transition for small cross medium unmanned aerial vehicles [J]. Flight Mechanics, 2021,39 (05): 77-81+94. DOI: 10.13645/j.cnki.f.d.20210611.011.
[12]王成,杨杰,姚辉等.四旋翼无人机飞行控制算法综述[J].电光与控制,2018,25(12):53-58.
Wang Cheng, Yang Jie, Yao Hui, et al. A review of flight control algorithms for quadcopter unmanned aerial vehicles [J]. Electrooptics and Control, 2018,25 (12): 53-58.
[13]BAI Y L,JIN Y F,LIU C H,et al. Nezha-F:Design and Analysis of a Foldable and Self- Deployable HAUV [J]. IEEE Robotics and Automation Letters 8,2023:2309-2316.
[14]唐胜景,张宝超,岳彩红,等.跨介质飞行器关键技术及飞行动力学研究趋势分析[J]. 飞航导弹,2021(6):7-13.
Tang Shengjing, Zhang Baochao, Yue Caihong, et al. Analysis of Key Technologies and Flight Dynamics Research Trends of Cross Media Aircraft [J]. Aviation Missile, 2021 (6): 7-13.
[15]徐仁,鞠世琦,詹祺,王潇.旋翼跨介质试验系统设计与性能实验研究[J/OL].飞行力学.https://doi.org/10.13645/j.cnki.f.d.20231024.001.
Xu Ren, Ju Shiqi, Zhan Qi, Wang Xiao. Design and performance experimental research of rotor cross medium test system [J/OL]. Flight mechanics https://doi.org/10.13645/j.cnki.f.d.20231024.001.
[16]李鹏,石永康,郭稳敏,等.四旋翼植保无人机机臂折叠机构轻量化设计[J].农机化研究,2024,46(06):116-121.DOI:10.13427/j.cnki.njyi.2024.06.016.
LI Peng, SHI Yongkang, GUO Wenmin, et al. Lightweight design of folding mechanism of quadrotor plant protection UAV arm[J].Agricultural Mechanization Research,2024,46(06):116-121.DOI:10.13427/j.cnki.njyi.2024.06.016.
[17]侯国祥.流体动力学[M].北京:机械工业出版社,2015.
Hou Guoxiang. Fluid Dynamics [M]. Beijing: Machinery Industry Press, 2015.
[18]史崇镔.跨介质结构物出入水多相流体动力学特性研究[D].大连理工大学, 2022. DOI:10.26991/d.cnki.gdllu.2021.002803.
Shi Chongbin. Study on the multiphase fluid dynamics characteristics of cross medium structures entering and exiting water [D]. Dalian University of Technology, 2022. DOI: 10.26991/dcnki.gdllu.2021.002803.
[19]Qi,Duo & Feng,Jinfu & Li,Yongli.(2016).Dynamic model and ADRC of a novel water-air unmanned vehicle for water entry with in-ground effect. Journal of Vibroengineering.18.3743-3756.10.21595/jve.2016.17127.
[20]韩京清.控制理论-模型论还是控制论[J].系统科学与数学,1989,(4):328-335.
Han Jingqing. Control Theory Model Theory or Control Theory [J]. Systems Science and Mathematics, 1989, (4): 328-335.
[21]王术波,韩宇,陈建等.基于ADRC迭代学习控制的四旋翼无人机姿态控制[J].航空学报,2020,41(12):319-331.
Wang Shubo, Han Yu, Chen Jian, et al. Attitude control of quadcopter unmanned aerial vehicles based on ADRC iterative learning control [J]. Journal of Aeronautics, 2020, 41 (12): 319-331.
文章导航

/