流体力学与飞行力学

支板一体化稳定器液雾分布特性

  • 吴杰 ,
  • 刘舆帅 ,
  • 穆勇 ,
  • 雷庆春 ,
  • 范玮
展开
  • 1.西北工业大学 动力与能源学院,西安 710129
    2.中国科学院 工程热物理研究所 轻型动力实验室,北京 100190
E-mail: lqc@nwpu.edu.cn

收稿日期: 2024-10-22

  修回日期: 2024-11-29

  录用日期: 2024-12-20

  网络出版日期: 2024-12-30

基金资助

国家科技重大专项(J2019-Ⅲ-0004-0047);泰山学者工程

Spray distribution characteristics of integrated strut flameholder

  • Jie WU ,
  • Yushuai LIU ,
  • Yong MU ,
  • Qingchun LEI ,
  • Wei FAN
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China
    2.Laboratory of Light-duty Gas-turbine,Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China
E-mail: lqc@nwpu.edu.cn

Received date: 2024-10-22

  Revised date: 2024-11-29

  Accepted date: 2024-12-20

  Online published: 2024-12-30

Supported by

National Science and Technology Major Project of China (J2019-Ⅲ-0004-0047);Taishan Scholars

摘要

随着加力燃烧室进口参数的不断提高,传统结构面临诸多问题,使得一体化设计成为主流趋势,而目前支板一体化稳定器在非常规参数下的研究还较少,且尾缘结构形式较为单一。设计了一种加力燃烧室支板稳定器尾缘构型,在进气余旋角-25°~25°、来流压力0.1~0.7 MPa、燃油喷射角度30°~150°、喷嘴孔径0.5~1.4 mm、液气动量比33~124等工况下研究了其液雾分布特性,并提出了其余7种尾缘构型进行对比,探究尾缘结构对射流雾化的潜在影响性。研究表明:增大来流压力、负进气余旋角(背风侧)时,射流轨迹降低,穿深下降;增大喷嘴直径、90°~110°范围内逆向燃油喷射角、0°~25°正进气余旋角时,射流穿透深度增大,轨迹升高,空流区尺寸逐渐增大;文中A~I几种尾缘构型对射流外轮廓几乎无影响,而对内边界影响较大;液气动量比对射流穿深起决定作用,韦伯数影响较小。

本文引用格式

吴杰 , 刘舆帅 , 穆勇 , 雷庆春 , 范玮 . 支板一体化稳定器液雾分布特性[J]. 航空学报, 2025 , 46(12) : 131429 -131429 . DOI: 10.7527/S1000-6893.2024.31429

Abstract

As traditional structures encounter numerous challenges with continuous improvement of inlet parameters in afterburners, integrated design has become the mainstream trend. However, research on integrated strut flameholder with unconventional parameters is still relatively scarce, and there is a notable scarcity in the variety of trailing edge configurations explored. Therefore, this study presents a design for trailing edge configuration of an integrated strut flameholder used in afterburner. The characteristics of liquid spray distribution under varied conditions are investigated, including inlet cosine rotation angles ranging from -25° to 25°, inlet pressures from 0.1 to 0.7 MPa, fuel injection angles from 30° to 150°, nozzle diameters from 0.5 to 1.4 mm, and liquid-to-air momentum ratios from 33 to 124. Additionally, seven other trailing edge configurations are compared to study their potential influences on jet atomization. The experiments demonstrate that increasing inlet pressure and negative inlet cosine rotation angle (leeward side) result in reduced jet trajectory and penetration depth. Conversely, increasing nozzle diameter and the reverse fuel injection angle between 90° and 110°, along with the positive inlet cosine rotation angle below 25°, lead to increased jet penetration depth, higher trajectory, and gradual enlargement of the void area. The different trailing edge configurations named A–I in this article have minimal impact on the outer trajectory of the jet, but significantly affect the inner boundary. The liquid-to-air momentum ratio plays a critical role in jet penetration depth, while the Weber number has a less influence.

参考文献

[1] CLEMENTS T R, GRAVES C B. Augmentor burner: US5385015[P]. 1995-01-31.
[2] 《航空发动机设计手册》总编委会. 航空发动机设计手册——第11册[M]. 北京: 航空工业出版社, 2001.
  General Editorial Board of Aero-engine Design Manual. Aero-engine design manual: Volume 11[M]. Beijing: Aviation Industry Press, 2001 (in Chinese).
[3] 洪杰, 陈光. 现代航空发动机发展与结构设计[M]. 北京:北京航空航天大学出版社, 2007.
  HONG J, CHEN G. Modern aero-engine development and structural design [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2007 (in Chinese).
[4] 蒋联友, 李江宁, 赵巍, 等. 余旋对加力燃烧室扩压器流场结构的影响研究[C]∥中国航空学会第八届动力年会. 北京: 中国航空学会, 2014 .
  JIANG L Y, LI J N, ZHAO W, et al. Investigation of residual swirl impact on the flowing field structure of diffusor[C]∥8th Annual Conference of Power of Chinese Society of Aeronautics and Astronautics. Beijing: Chinese Society of Aeronautics and Astronautics, 2014 (in Chinese).
[5] 刘云鹏, 张举星, 李伟, 等. 高温强余旋非均匀来流生成规律数值研究[J]. 航空动力学报202338(8): 1965-1974.
  LIU Y P, ZHANG J X, LI W, et al. Numerical simulation on generation law of non-uniform inflow under high temperature and strong cosine rotation condition[J]. Journal of Aerospace Power202338(8): 1965-1974 (in Chinese).
[6] LUBARSKY E, CUTRIGHT J T, ZINN B T, et al. Spray characterization at jet engine thrust augmentor flow conditions[C]∥ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York: ASME, 2009: 687-699.
[7] ZHAO Y L, FAN W J, ZHANG R C. Experimental study on the effect of injection schemes on fuel spray and combustion characteristics in a compact combustor[J]. Aerospace Science and Technology2023141: 108510.
[8] 张权, 刘玉英, 谢奕, 等. 侧喷式一体化支板火焰稳定器液雾分布试验[J]. 航空动力学报202338(3): 607-617.
  ZHANG Q, LIU Y Y, XIE Y, et al. Experiment on spray distribution of an integrated strut flameholder with cross injection[J]. Journal of Aerospace Power202338(3): 607-617 (in Chinese).
[9] CHEN Y Q, ZHAI W H, FAN Y X. Measurement of the vapor-phase and liquid-phase fuel distributions downstream of an integrated flameholder in heated stream[J]. Fuel2019255: 115808.
[10] LI F, ZHAO B B, HE L M, et al. Experimental study on spray characteristics of fan nozzle for integrated afterburner in lateral airflow[J]. Aerospace Science and Technology2022130: 107937.
[11] 张彬, 成鹏, 李清廉, 等. 液体横向射流在气膜作用下的破碎过程[J]. 物理学报202170(5): 230-241.
  ZHANG B, CHENG P, LI Q L, et al. Breakup process of liquid jet in gas film[J]. Acta Physica Sinica202170(5): 230-241 (in Chinese).
[12] YANG H, LI F, SUN B G. Trajectory analysis of fuel injection into supersonic cross flow based on schlieren method[J]. Chinese Journal of Aeronautics201225(1): 42-50.
[13] ZHOU W Y, CHEN B, ZHU Q B, et al. Numerical simulation of angled-injected liquid jet breakup in supersonic crossflow by a hybrid VOF-LPT method[J]. International Journal of Multiphase Flow2023166: 104503.
[14] 兰天, 孔令真, 陈家庆, 等. 基于图像处理的低速横流中液体射流轨迹提取方法研究[J]. 实验流体力学202034(4): 94-101.
  LAN T, KONG L Z, CHEN J Q, et al. Study on extraction method of liquid jet trajectory in low-speed air crossflow based on image processing[J]. Journal of Experiments in Fluid Mechanics202034(4): 94-101 (in Chinese).
[15] NO S Y. A review on empirical correlations for jet/spray trajectory of liquid jet in uniform cross flow[J]. International Journal of Spray and Combustion Dynamics20157(4): 283-313.
[16] PHILBIN B R. Impact of injector fabrication technique on the injection and atomization of JP-10 for high-speed aero-propulsion systems[D]. Monterey: Naval Postgraduate School, 2021.
[17] BARANOVSKY S I, SCHETZ J A. Effect of injection angle on liquid injection in supersonic flow[J]. AIAA Journal198018(6): 625-629.
[18] YANG H, LI F, SUN B G. Trajectory analysis of fuel injection into supersonic cross flow based on schlieren method[J]. Chinese Journal of Aeronautics201225(1): 42-50.
[19] 赵家丰, 聂万胜, 仝毅恒, 等. 喷注角度对超声速气流中液体横向射流的影响[J]. 推进技术202243(6): 239-249.
  ZHAO J F, NIE W S, TONG Y H, et al. Effects of injection angles on liquid jets in supersonic crossflows[J]. Journal of Propulsion Technology202243(6): 239-249 (in Chinese).
[20] 赵家丰, 聂万胜, 陈植, 等. 扩张型面内超声速气流中液体横向射流穿透深度试验研究[J]. 推进技术202243(7): 266-275.
  ZHAO J F, NIE W S, CHEN Z, et al. Experimental study on penetration depth of transverse liquid jet in a supersonic flow in expanded section[J]. Journal of Propulsion Technology202243(7): 266-275 (in Chinese).
文章导航

/