在高速流动中,边界层转捩不仅会显著增加热流,影响热防护设计,还会改变飞行器表面的气动力载荷,进而改变静/动稳定性,对飞行安全和操控特性带来影响,因此转捩是高性能气动设计关注的重要气动问题之一。本文以半锥角7°尖锥马赫数6流动为研究对象,在Ф1米常规高速风洞中开展了强迫振动动导数测量实验,同步测量了红外热图,不仅获得了不同雷诺数、攻角下俯仰力矩静/动导数,而且得到了清晰的转捩阵面,通过二者的对比分析了静/动稳定性和转捩位置的关系,并通过典型转捩流动的定常数值模拟分析了气动力矩特性改变的机制,弥补了之前研究手段的不足,进一步明确了转捩和动态气动特性之间的关系和物理机制。研究结果表明:转捩对动态气动特性的影响与转捩区域相对质心的位置密切相关,当转捩阵面处于质心下游区域时,静/动稳定性会发生显著改变;转捩发生后引起壁面压力、摩阻的非对称变化是导致静/动稳定性改变的根本原因,其中摩阻在转捩引起的附加力矩中具有和压力相当的作用。
In high-speed flows, boundary layer transition will not only significantly increase heat-flux and affect thermal protection design, but also change aerodynamic load on aircraft surface, and then change static/dynamic stability. This will have an impact on the flight safety and control characteristics, so transition is one of the important aerodynamic issues in high-performance aerodynamic design. In present study, the experiment of forced vibration dynamic derivative measurement was carried out in a Ф1m conventional high-speed wind tunnel with a 7-degree half-angle sharp cone at Mach number 6, and the infrared thermogram was measured simultaneously. Not only the static/dynamic derivatives of pitching moment at different Reynolds numbers and angles of attack, but also a series of clear transition front are obtained. By comparing them, the relationship between static/dynamic stability and transition position is analyzed, and the mechanism of aerodynamic moment characteristics change is analyzed by steady numerical simulation of typical transition flow. These works make up for the deficiency of previous research methods, and further clarify the relationship and physical mechanism between transition and dynamic aerodynamic characteristics. The results show that the influence of transition on dynamic aerodynamic characteristics is closely related to the position of the transition region relative to the center of mass, and the static/dynamic stability will change significantly when the transition front is in the downstream region of the center of mass; The asymmetric change of wall pressure and friction caused by transition is the fundamental reason for the change of static/dynamic stability, and friction plays an equal role as pressure in the additional moment induced by transition.
[1]周 恒, 张涵信.有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J].空气动力学学报, 2017, 35(2):151-155
[2]T C. Lin.Influence of Laminar Boundary-Layer Transition on Entry Vehicle Designs[J].Journal of Spacecraft and Rockets., 2008, 45(2):165-175
[3]陈坚强, 涂国华, 张毅锋等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337
[4]解少飞, 杨武兵, 沈清.高超声速边界层转捩机理及应用的若干进展回顾[J].航空学报, 2015, 36(3):714-723
[5]罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1):357-372
[6]陈坚强, 袁先旭, 涂国华等.高超声速边界层转捩的几点认识[J].中国科学物理学力学天文, 2019, 49(11):114701-
[7]Chrusciel, G.T.,Analysis of Re-Entry Vehicle Behavior during Boundary-Layer Transition[J].AIAA Journal, 1975, 13(2):154-159
[8]Ericcson, L.E.,Effect of Boundary-Layer Transition on Vehicle Dynamics[J].Journal of Spacecraft and Rockets, 1969, 6(12):1404-1409
[9]楼洪田.边界层转捩对细长锥静、动稳定性的影响, ,[J].宇航学报, 1985, 6(1):88-98
[10] Ericcson, L.E., Transition effects on slender vehicle stability and trim characteristics [R]. AIAA-73-0126.
[11]East R.A. and Huttf GR,Comparison of predictions and experimental data for hypersonic pitching[J].Journal of Spacecraft and Rockets, 1988, 25(3):225-233
[12]楼洪田.转捩诱导法向力及其对细长锥气动特性的影响[J].宇航学报, 1989, 10(3):54-64
[13]楼洪田.尖锥气动特性边界层转捩诱导量的测定研究[J].宇航学报, 1998, 19(2):1-6
[14]宋威, 蒋增辉, 贾区耀.细长锥边界层绊线转捩风洞自由飞试验[J].力学学报, 2016, 48(6):1301-1307
[15]宋威, 赵小见, 鲁伟, 等.高超声速边界层转捩对旋转钝锥自由飞运动的影响[J].航空学报, 2017, 38(1):121295-
[16]Ericsson, L.E.,Transition effects on slender vehicle stability and trim characteristics[J].Journal of Spacecraft and Rockets, 1974, 11(1):3-11
[17]郭雷涛.Ф1米高超声速风洞动导数试验技术研究[D].绵阳:中国空气动力研究与发展中心, 2013
[18]陈久芬, 凌岗, 张庆虎, 等.尖锥高超声速边界层转捩红外测量实验[J].实验流体力学, 2020, 34(1):60-66
[19]Joshua B.Edelman. Nonlinear growth and breakdownof the hypersonic crossflow instability [D]. West Lafayette, Indiana: Purdue University, 2019.
[20]张毅锋,何琨,张益荣, 等.转捩模型在高超声速流动模拟中的改进及验证[J].宇航学报, 2016, 37(4):397-402
[21]向星皓, 张毅锋, 袁先旭, 等.C-γ-Reθ 高超声速三维边界层转捩预测模型[J].航空学报, 2021, 42(9):625711-