基于视场映射模型的GEO目标观测覆盖性分析

  • 顾轶 ,
  • 王慧林 ,
  • 郭鹤鹤 ,
  • 伍国华 ,
  • 曾志强
展开
  • 1. 中南大学
    2. 北京跟踪与通信技术研究所
    3. 北京空间飞行器总体设计部
    4. 中南大学,复杂系统智能决策研究中心
    5. 北京航空航天大学

收稿日期: 2024-11-25

  修回日期: 2024-12-14

  网络出版日期: 2024-12-18

基金资助

国家自然科学基金面上项目

Analysis of GEO Target Observation Coverage Based on Field of View Mapping Model

  • GU Yi ,
  • WANG Hui-Lin ,
  • GUO He-He ,
  • WU Guo-Hua ,
  • ZENG Zhi-Qiang
Expand

Received date: 2024-11-25

  Revised date: 2024-12-14

  Online published: 2024-12-18

摘要

地球静止轨道(GEO)航天器是具有高价值的空间资产,也是空间态势感知中的重要目标。面向我国太空安全保障的需求,本文基于天基观测平台,开展对高轨道空间目标覆盖分析的研究工作。首先提出天基观测平台的载荷视元模型,并建立观测GEO目标的载荷视元方程,通过对该方程进行求解,可以得到二维平面上的视场映射域,从而将天基平台对GEO目标的覆盖分析问题转化为二维平面上的轨迹相交问题;针对准GEO目标覆盖分析问题,通过提出等效地球自转角速度概念并改进视场映射域方法进行求解;进一步地,基于多星相对视场映射域的概念,将单星覆盖分析方法拓展至同质星座覆盖应用场景。大量仿真试验结果表明,与STK的计算结果对比,所提出方法的可见窗口计算精度优于0.1s,这验证了所提出的模型和方法的有效性。

本文引用格式

顾轶 , 王慧林 , 郭鹤鹤 , 伍国华 , 曾志强 . 基于视场映射模型的GEO目标观测覆盖性分析[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31570

Abstract

Geostationary orbit (GEO) spacecraft are critical space assets and pivotal in space situational awareness. This paper addresses China's space security requirements by conducting coverage analysis of high-orbit space targets from a space-based observation platform. Initially, a novel load element model for space-based observation platforms is introduced, alongside an equation for observing GEO targets. Solving this equation delineates the field of view mapping domain on a two-dimensional plane, with the platform's trajectory represented as a line segment. This reformulates the observation window issue for GEO targets into a trajectory intersection problem on the plane. To address the issue of quasi GEO target coverage analysis, the concept of equivalent Earth rotation angular velocity is proposed and the field of view mapping domain method is improved for solution. Additionally, the concept of a multi-star relative field of view mapping domain is introduced, extending the single-star coverage analysis to constellation coverage scenarios. Extensive simulation experiments reveal that the proposed method's visible window calculation error is less than 0.1 seconds when compared to STK calculations, thereby validating the model and method's effectiveness.

参考文献

[1] Cai H, Yang Y, Gehly S, et al. Sensor tasking for search and catalog maintenance of geosynchronous space objects[J]. Acta Astronautica, 2020, 175: 234–248. [2] 郝雅楠, 陈杰, 祝彬, 等. 美军地基空间态势感知系统的现状与趋势[J]. 国防科技工业, 2019, (3): 4. HAO Y N, CHEN J, ZHU B, et al. The current status and trends of the US ground based space situation awareness system[J]. Defence Science & Technology Industry, 2019, (3): 4. (in Chinese) [3] 范志涵, 蔡亚星, 李凤簪. 针对GEO目标的美国天基态势感知技术发展研究[J]. 航天器工程, 2019, 28(6): 87–95. FAN Z H, CAI Y X, LI F Z, et al. Study on development of American space-based situational awareness technology for GEO objects[J]. Spacecraft Engineering, 2019, 28(6): 87–95. (in Chinese) [4] Yunpeng H, Kebo L, Yan’gang L, et al. Review on strategies of space-based optical space situational awareness[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1152–1166. [5] Wang Y, Sun S, Li L. Adaptively robust unscented Kalman filter for tracking a maneuvering vehicle[J]. Journal of Guidance, Control, and Dynamics, American Institute of Aeronautics and Astronautics, 2014, 37(5): 1696–1701. [6] Yu J, Huang D, Li W, et al. Parallel accelerated computing architecture for dim target tracking on‐board[J]. Computational Intelligence, 2024, 40(1): e12604. [7] 范志涵, 蔡亚星, 李凤簪. 针对GEO目标的美国天基态势感知技术发展研究[J]. 航天器工程, 2019, 28(06):87-95. FAN Z, CAI Y X, LI F Z. Study on Development of American Space-based Situational Awareness Technology for GEO Objects[J]. Spacecraft Engineering, 2019, 28(06):87-95. (in Chinese) [8] 刘付成, 叶立军. 基于多星编队的GEO目标巡视策略[J]. 空间控制技术与应用, 2022, 48(3): 29-38. LIU F C, YE L J. Patrol Strategy of the GEO Targets Based on Muti-Satellite Formation[J]. Aerospace Control and Application, 2022, 48(3): 29-38. (in Chinese) [9] 胡海鹰, 朱永生, 江新华. 美国高轨空间安全发展态势及其关键技术[J]. 空间控制技术与应用, 2022, 48(3): 1-10. HU H Y, ZHU Y S, JIANG X H. The development trend of high Earth orbit space security and key technologies[J]. Aerospace Control and Application, 2022, 48(3): 1-10. (in Chinese) [10] 伍国华, 王天宇. 基于自适应模拟退火的大规模星座测控资源调度算法[J]. 航空学报, 2023, 44(12): 265–286. WU G H, WANG T Y. Large-scale constellation TT&C resource scheduling algorithm based on adaptive simulated annealing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 265-286. (in Chinese) [11] 李恒伟, 罗启章, 顾轶, 等. 基于滚动时域策略的中继卫星多目标动态调度优化方法[J]. 航空学报, 2024, 45(10): 329706. LI H W, LUO Q Z, GU Y, et al. Multi-objective dynamic scheduling optimization method for relay satellite based on rolling horizon strategy[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329706. (in Chinese) [12] 李宗凌, 龙腾, 赵保军, 等. 面向预警场景的大规模星座协同调度标准建模与求解方法[J]. 航空学报, 2024: 1–16. LI Z L, LONG T, ZHAO B J. Standard Modeling and solving methods for large-scale constellation collaborative scheduling for early warning scenarios [J]. Acta Aeronautica et Astronautica Sinica, 2024: 1–16. (in Chinese) [13] Cai H, Gehly S, Yang Y, et al. Multisensor Tasking Using Analytical Rényi Divergence in Labeled Multi-Bernoulli Filtering[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(9): 2078–2085. [14] Han C, Gao X, Sun X. Rapid satellite-to-site visibility determination based on self-adaptive interpolation technique[J]. Science China Technological Sciences, 2017, 60(2): 264–270. [15] Gu Y, Han C, Wang X. A Kriging Based Framework for Rapid Satellite-to-Site Visibility Determination[C]//2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE). 2019: 262–267. [16] Han C, Zhang Y, Bai S. Geometric Analysis of Ground-Target Coverage from a Satellite by Field-Mapping Method[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(8): 1469–1480. [17] Wang X, Han C, Yang P, et al. Onboard satellite visibility prediction using metamodeling based framework[J]. Aerospace Science and Technology, 2019, 94: 105377. [18] Lawton JA. Numerical method for rapidly determining satellite-satellite and satellite-ground station in-view periods[J]. Journal of Guidance, Control, and Dynamics, American Institute of Aeronautics and Astronautics, 1987, 10(1): 32–36. [19] Sun X, Cui H, Han C, et al. APCHI technique for rapidly and accurately predicting multi-restriction satellite visibility[C]//Proceedings of the 22nd AAS/AIAA Space Flight Mechanics Meeting. Charleston, South Carolina: 2012. [20] Li S, Hou K, Cheng C, et al. A Space-Interconnection Algorithm for Satellite Constellation Based on Spatial Grid Model[J]. Remote Sensing, 2020, 12(13): 2131. [21] Yang H, Zhang Y, Li S, et al. Rapid Determination of Low-Earth-Orbit Occultation-Event Windows[J]. Journal Of Guidance, Control, And Dynamics, 2024: 1–7. [22] Li J, Zhang G, Tian L. Orbit Design and Optimization for Point Target Revisit in LEO-LEO Occultation[J]. Journal of Aerospace Engineering, 2024, 37(6): 04024083. [23] Zhang Y, Han C, Sun W, et al. Geometric-Based Method for Regional-Target Coverage Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2252-2265. [24] 顾轶, 孙秀聪, 范黎明, 等. 基于仰角视元模型的星地快速覆盖分析方法[J]. 航空学报, 2025, 46(3):330372. GU Y, SUN X C, FAN L M, et al. A rapid satellite-ground coverage analysis method based on elevation view element model[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3):330372. (in Chinese) [25] Yu J, Huang D, Li W, et al. Dim Staring Debris Targets Detection Method with Dense Long Trailing Star[J]. Applied Sciences, 2023, 13(16): 9148. [26] Liu D, Zong Q, Zhang X, et al. Enhancing Space-Based Situational Awareness: Real-Time Observation of Dynamic Targets with Meta Cooperative-Scheduling Net[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024: 1-15. [27] Yang H, Zhang Y, Bai X, et al. Real-Time Satellite Constellation Scheduling for Event-Triggered Cooperative Tracking of Space Objects[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 2169-2182. [28] 张洪波. 航天器轨道力学理论与方法[M]. 国防工业出版社, 2015. ZHANG H. Theories and methods of spacecraft orbital mechanics[M]. National Defence Industry Press, 2015. (in Chinese)
文章导航

/