[1] Cai H, Yang Y, Gehly S, et al. Sensor tasking for search and catalog maintenance of geosynchronous space objects[J]. Acta Astronautica, 2020, 175: 234–248.
[2] 郝雅楠, 陈杰, 祝彬, 等. 美军地基空间态势感知系统的现状与趋势[J]. 国防科技工业, 2019, (3): 4.
HAO Y N, CHEN J, ZHU B, et al. The current status and trends of the US ground based space situation awareness system[J]. Defence Science & Technology Industry, 2019, (3): 4. (in Chinese)
[3] 范志涵, 蔡亚星, 李凤簪. 针对GEO目标的美国天基态势感知技术发展研究[J]. 航天器工程, 2019, 28(6): 87–95.
FAN Z H, CAI Y X, LI F Z, et al. Study on development of American space-based situational awareness technology for GEO objects[J]. Spacecraft Engineering, 2019, 28(6): 87–95. (in Chinese)
[4] Yunpeng H, Kebo L, Yan’gang L, et al. Review on strategies of space-based optical space situational awareness[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1152–1166.
[5] Wang Y, Sun S, Li L. Adaptively robust unscented Kalman filter for tracking a maneuvering vehicle[J]. Journal of Guidance, Control, and Dynamics, American Institute of Aeronautics and Astronautics, 2014, 37(5): 1696–1701.
[6] Yu J, Huang D, Li W, et al. Parallel accelerated computing architecture for dim target tracking on‐board[J]. Computational Intelligence, 2024, 40(1): e12604.
[7] 范志涵, 蔡亚星, 李凤簪. 针对GEO目标的美国天基态势感知技术发展研究[J]. 航天器工程, 2019, 28(06):87-95.
FAN Z, CAI Y X, LI F Z. Study on Development of American Space-based Situational Awareness Technology for GEO Objects[J]. Spacecraft Engineering, 2019, 28(06):87-95. (in Chinese)
[8] 刘付成, 叶立军. 基于多星编队的GEO目标巡视策略[J]. 空间控制技术与应用, 2022, 48(3): 29-38.
LIU F C, YE L J. Patrol Strategy of the GEO Targets Based on Muti-Satellite Formation[J]. Aerospace Control and Application, 2022, 48(3): 29-38. (in Chinese)
[9] 胡海鹰, 朱永生, 江新华. 美国高轨空间安全发展态势及其关键技术[J]. 空间控制技术与应用, 2022, 48(3): 1-10.
HU H Y, ZHU Y S, JIANG X H. The development trend of high Earth orbit space security and key technologies[J]. Aerospace Control and Application, 2022, 48(3): 1-10. (in Chinese)
[10] 伍国华, 王天宇. 基于自适应模拟退火的大规模星座测控资源调度算法[J]. 航空学报, 2023, 44(12): 265–286.
WU G H, WANG T Y. Large-scale constellation TT&C resource scheduling algorithm based on adaptive simulated annealing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 265-286. (in Chinese)
[11] 李恒伟, 罗启章, 顾轶, 等. 基于滚动时域策略的中继卫星多目标动态调度优化方法[J]. 航空学报, 2024, 45(10): 329706.
LI H W, LUO Q Z, GU Y, et al. Multi-objective dynamic scheduling optimization method for relay satellite based on rolling horizon strategy[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329706. (in Chinese)
[12] 李宗凌, 龙腾, 赵保军, 等. 面向预警场景的大规模星座协同调度标准建模与求解方法[J]. 航空学报, 2024: 1–16.
LI Z L, LONG T, ZHAO B J. Standard Modeling and solving methods for large-scale constellation collaborative scheduling for early warning scenarios [J]. Acta Aeronautica et Astronautica Sinica, 2024: 1–16. (in Chinese)
[13] Cai H, Gehly S, Yang Y, et al. Multisensor Tasking Using Analytical Rényi Divergence in Labeled Multi-Bernoulli Filtering[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(9): 2078–2085.
[14] Han C, Gao X, Sun X. Rapid satellite-to-site visibility determination based on self-adaptive interpolation technique[J]. Science China Technological Sciences, 2017, 60(2): 264–270.
[15] Gu Y, Han C, Wang X. A Kriging Based Framework for Rapid Satellite-to-Site Visibility Determination[C]//2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE). 2019: 262–267.
[16] Han C, Zhang Y, Bai S. Geometric Analysis of Ground-Target Coverage from a Satellite by Field-Mapping Method[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(8): 1469–1480.
[17] Wang X, Han C, Yang P, et al. Onboard satellite visibility prediction using metamodeling based framework[J]. Aerospace Science and Technology, 2019, 94: 105377.
[18] Lawton JA. Numerical method for rapidly determining satellite-satellite and satellite-ground station in-view periods[J]. Journal of Guidance, Control, and Dynamics, American Institute of Aeronautics and Astronautics, 1987, 10(1): 32–36.
[19] Sun X, Cui H, Han C, et al. APCHI technique for rapidly and accurately predicting multi-restriction satellite visibility[C]//Proceedings of the 22nd AAS/AIAA Space Flight Mechanics Meeting. Charleston, South Carolina: 2012.
[20] Li S, Hou K, Cheng C, et al. A Space-Interconnection Algorithm for Satellite Constellation Based on Spatial Grid Model[J]. Remote Sensing, 2020, 12(13): 2131.
[21] Yang H, Zhang Y, Li S, et al. Rapid Determination of Low-Earth-Orbit Occultation-Event Windows[J]. Journal Of Guidance, Control, And Dynamics, 2024: 1–7.
[22] Li J, Zhang G, Tian L. Orbit Design and Optimization for Point Target Revisit in LEO-LEO Occultation[J]. Journal of Aerospace Engineering, 2024, 37(6): 04024083.
[23] Zhang Y, Han C, Sun W, et al. Geometric-Based Method for Regional-Target Coverage Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2252-2265.
[24] 顾轶, 孙秀聪, 范黎明, 等. 基于仰角视元模型的星地快速覆盖分析方法[J]. 航空学报, 2025, 46(3):330372.
GU Y, SUN X C, FAN L M, et al. A rapid satellite-ground coverage analysis method based on elevation view element model[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3):330372. (in Chinese)
[25] Yu J, Huang D, Li W, et al. Dim Staring Debris Targets Detection Method with Dense Long Trailing Star[J]. Applied Sciences, 2023, 13(16): 9148.
[26] Liu D, Zong Q, Zhang X, et al. Enhancing Space-Based Situational Awareness: Real-Time Observation of Dynamic Targets with Meta Cooperative-Scheduling Net[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024: 1-15.
[27] Yang H, Zhang Y, Bai X, et al. Real-Time Satellite Constellation Scheduling for Event-Triggered Cooperative Tracking of Space Objects[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 2169-2182.
[28] 张洪波. 航天器轨道力学理论与方法[M]. 国防工业出版社, 2015.
ZHANG H. Theories and methods of spacecraft orbital mechanics[M]. National Defence Industry Press, 2015. (in Chinese)