多航天器非严格守序并行装配任务规划方法

  • 岳程斐 ,
  • 张枭 ,
  • 曹喜滨
展开
  • 1. 哈尔滨工业大学(深圳)空天科技学院
    2. 哈尔滨工业大学卫星技术研究所

收稿日期: 2024-09-24

  修回日期: 2024-12-16

  网络出版日期: 2024-12-18

基金资助

多分支航天器变拓扑耦合动力学建模与力位型协同控制;面向大平台的集群系统自主规划与协同控制研究

Non-order-conserving parallel assembly task planning for multi-spacecraft

  • YUE Cheng-Fei ,
  • ZHANG Xiao ,
  • CAO Xi-Bin
Expand

Received date: 2024-09-24

  Revised date: 2024-12-16

  Online published: 2024-12-18

摘要

针对多分支航天器集群装配任务中部分航天器空闲、装配效率低的问题,提出了一种多航天器集群装配任务规划建模与序列分配方法。首先,考虑非严格守序并行装配场景,基于装配约束关系图建立了多航天器装配任务规划模型。其次,提出了装配前序指标和同路惯性指标,对非严格守序装配时子装配体数量和装配过程进行了约束,以避免不同航天器在连续装配任务中装配体之间来回切换的问题。最后,基于深度优先搜索策略改进了拓扑排序算法,解决了非严格守序并行装配中的序列分配规划问题;采用遗传算法对装配序列进行优化,在提高装配效率的同时有效降低了零散子装配体数量和连续任务切换次数;采用Gimbel-Sinkhorn网络为装配任务序列分配解集,实现了单一装配序列到可行装配解集的映射。最后通过典型在轨装配任务仿真,验证了任务规划模型与序列分配方法的有效性。

本文引用格式

岳程斐 , 张枭 , 曹喜滨 . 多航天器非严格守序并行装配任务规划方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31258

Abstract

Spacecraft assembly task planning system and sequence allocation planning method are proposed to address the prob-lem of spacecraft idling and low assembly efficiency due to the assembly constraints during the multi-branch spacecraft cluster execution of on-orbit assembly task. multi-spacecraft assembly task planning model is established based on the assembly constraint relationship graph considering non-order-conserving assembly assumption scenario. The assembly order forward index and homologation inertia index are proposed to constrain the problems of fragmentation and explo-sion of the number of subassemblies under the non-order-conserving assumption, as well as the problem of switching between different spacecrafts for successive assembly tasks. The topological sorting algorithm is improved based on depth-first search to solve the sequence allocation planning problem under the non-order-conserving constraints; the ge-netic algorithm is adopted for assembly sequence optimization, which effectively reduces the number of fragmented sub-assemblies and the number of consecutive task switches while improving the assembly efficiency; and the Gimbel-Sinkhorn network is used as the sequence allocation solution set for the assembly tasks, which realizes the mapping of a single assembly sequence to a feasible assembly solution set. The simulation calculation of on-orbit assembly task se-quence allocation planning verifies the effectiveness of the model and method.

参考文献

[1]王明明, 罗建军, 袁建平等.空间在轨装配技术综述[J].航空学报, 2021, 42(1):47-61
[2]岳程斐, 陆浪, 吴云华等.在轨集群操控关键技术研究进展与展望[J].宇航学报, 2023, 44(6):817-828
[3]刘宏, 刘冬雨, 蒋再男.空间机械臂技术综述及展望[J].航空学报, 2021, 42(1):33-46
[4]孟光, 韩亮亮, 张崇峰.空间机器人研究进展及技术挑战[J].航空学报, 2021, 42(1):8-32
[5]YUE C F, LIN T, ZHANG X, et al.Hierarchical path planning for multi-arm spacecraft with general translational and rotational locomotion mode[J].Sci-ence China Technological Sciences, 2023, 66(4):1180-1191
[6]牟帅, 卜慧蛟, 张进, 等.面向突发任务的空间站任务重规划方法[J].航空学报, 2017, 38(07):271-278
[7]Brown K J.Algorithms for Multi-Agent Robotic Assembly Planning[D]. California, Stanford Universi-ty, 2021: 8-40.
[8]Brown K J, Asmar D M, Schwager M, et al. Large-Scale Multi-Robot Assembly Planning for Autono-mous Manufacturing[J]. arXiv preprint arXiv:2311.00192, 2023.
[9]Culbertson P D.Planning and Control for Multi-Robot Manipulation and Assembly In Unstructured Environments[D]. California, Stanford University, 2022: 56-76.
[10]Culbertson P D, Bandyopadhyay S, Schwager M.Multi-robot assembly sequencing via discrete optimi-zation[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, IEEE, 2019: 6502-6509.
[11]Culbertson P, Bandyopadhyay S, Goel A, et al.Multi-robot assembly scheduling for the lunar crater radio telescope on the far-side of the moon[C]//2022 IEEE Aerospace Conference (AERO). Montana, IEEE, 2022: 1-9.
[12]Nagpal K, Mehr N. Optimal Robotic Assembly Se-quence Planning: A Sequential Decision-Making Ap-proach[J]. arXiv preprint arXiv:2310.17115, 2023.
[13]Zhang C, Cao Z, Wu Y, et al. Learning Topological Representations with Bidirectional Graph Attention Network for Solving Job Shop Scheduling Problem[J]. arXiv preprint arXiv:2402.17606, 2024.
[14]Wang N, Yang X, Wang T, et al. Collaborative path planning and task allocation for multiple agricultural machines[J]. Computers and Electronics in Agriculture, 2023, 213: 108218.
[15]Evans J D, Kessler R R. A communication-ordered task graph allocation algorithm[J]. IEEE Transactions on Parallel and Distributed Systems, Tech. Rep, 1992.
[16]Qian T, Liu X F, Fang Y. A Cooperative Ant Colony System for Multiobjective Multirobot Task Allocation With Precedence Constraints[J]. IEEE Transactions on Evolutionary Computation, 2024.
[17]Somani A, Singh D P.Parallel genetic algorithm for solving job-shop scheduling problem using topo-logical sort[C]//2014 International Conference on Ad-vances in Engineering & Technology Research (ICAETR-2014). IEEE, 2014: 1-8.
[18]邹子缘, 陈琪锋.基于决策树搜索的空间飞行器集群对抗目标分配方法[J].航空学报, 2022, 43(S1):78-88
[19]王路桥,王璐,庄慧盈,等.约束分级的飞行器任务指令序列编排方法[J/OL].航空学报,1-14[2024-09-17].http://kns.cnki.net/kcms/detail/11.1929.v.20240626.1002.004.html.DOI:10.7527/S1000-6893.2024.30445.
[20]Liu Z, Guo M, Bao W, et al.Fast and Adaptive Multi-Agent Planning under Collaborative Temporal Logic Tasks via Poset Products[J]. Research, 2024, 7: 0337.
[21]Liu Z, Guo M, Li Z.Time minimization and online synchronization for multi-agent systems under collaborative temporal logic tasks[J]. Automatica, 2024, 159: 111377.
[22]Bai X, Fielbaum A, Kronmüller M, et al.Group-based distributed auction algorithms for multi-robot task assignment[J].IEEE Transactions on Automation Science and Engineering, 2022, 20(2):1292-1303
[23]Bai X, Li C, Zhang B, et al.Efficient Performance Impact Algorithms for Multirobot Task As-signment With Deadlines[J]. IEEE Transactions on In-dustrial Electronics, 2024.
[24]Liu Y, Han D, Wang L, et al.Novel topological relationship solutions to the ALV Multi-indegree-multi-outdegree task sequence planning problem[J]. International Journal of Robotics and Automation, 2022, 37(3).
[25]Liu Y, Han D, Wang L, et al.HGHA: task allocation and path planning for warehouse agents[J].As-sembly Automation, 2021, 41(2):165-173
[26]Mena G, Belanger D, Linderman S, et al. Learning la-tent permutations with gumbel-sinkhorn networks[J]. arXiv preprint arXiv:1802.08665, 2018
文章导航

/