论 文

小型无人直升机故障估计与容错控制

  • 张晓龙 ,
  • 李荣 ,
  • 阎高伟 ,
  • 肖舒怡 ,
  • 李国强
展开
  • 1.太原理工大学 电气与动力工程学院,太原 030024
    2.中国辐射防护研究院,太原 030006
.E-mail: lirong@tyut.edu.cn

收稿日期: 2024-06-06

  修回日期: 2024-06-24

  录用日期: 2024-07-29

  网络出版日期: 2024-08-21

基金资助

国家自然科学基金(62003233);山西省应用基础研究计划(201901D2110831);山西省科技重大专项计划“揭榜挂帅”项目(202201090301013);国网山西省电力公司科技项目(5205M0230007)

Fault estimation and fault tolerant control for small unmanned helicopters

  • Xiaolong ZHANG ,
  • Rong LI ,
  • Gaowei YAN ,
  • Shuyi XIAO ,
  • Guoqing LI
Expand
  • 1.College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China
    2.China Institute for Radiation Protection,Taiyuan 030006,China
E-mail: lirong@tyut.edu.cn

Received date: 2024-06-06

  Revised date: 2024-06-24

  Accepted date: 2024-07-29

  Online published: 2024-08-21

Supported by

National Natural Science Foundation of China(62003233);Shanxi Provincial Basic Research Program(201901D2110831);Shanxi Province Selects the Best Candidates to Undertake Major Science and Technology Research Project(202201090301013);State Grid Shanxi Electric Power Company Technology Project(5205M0230007)

摘要

针对小型无人直升机发生故障时导致周期变距响应不足的问题,设计了一种基于滑模观测器的滑模容错控制方法。首先,设计具有规定性能指标的滑模观测器来估计无人直升机纵向横向系统的状态信息,并利用等效输出误差注入原理获取周期变距故障的具体信息。然后,基于周期变距故障信息设计了滑模容错控制器来保证系统的跟踪性能。最后,通过数值仿真验证了基于滑模观测器的滑模容错控制方案的有效性。仿真结果表明,设计的滑模容错控制器能够保证在外部扰动和周期变距故障综合作用下的无人直升机纵向横向系统的跟踪控制性能。

本文引用格式

张晓龙 , 李荣 , 阎高伟 , 肖舒怡 , 李国强 . 小型无人直升机故障估计与容错控制[J]. 航空学报, 2024 , 45(S1) : 730802 -730802 . DOI: 10.7527/S1000-6893.2024.30802

Abstract

Faults in small unmanned helicopters will cause insufficient cyclic pitch response. To address this problem, a sliding mode fault-tolerant control method based on the sliding mode observer is designed.First, a sliding mode observer with the specified performance index is designed to estimate the state information of the longitudinal and lateral systems of the unmanned helicopter, and the equivalent output error injection principle is utilized to obtain the specific information of the cyclic pitch fault. Then, a sliding mode fault-tolerant controller is designed based on the cyclic pitch fault information to ensure the tracking performance of the system. Finally, the effectiveness of the sliding mode fault-tolerant control scheme based on the sliding mode observer is verified by numerical simulation. The simulation results show that the designed sliding mode fault-tolerant controller can guarantee the tracking control performance of longitudinal and lateral systems of the unmanned helicopter under the combined effect of external perturbations and cyclic pitch faults.

参考文献

1 陈谋, 马浩翔, 雍可南, 等. 无人机安全飞行控制综述[J]. 机器人202345(3): 345-366.
  CHEN M, MA H X, YONG K N, et al. Safety flight control of UAV: A survey[J]. Robot202345(3): 345-366 (in Chinese).
2 闫超,涂良辉,王聿豪,等.无人机在我国民用领域应用综述[J].飞行力学202240(3): 1-6.
  YAN C, TU L H, WANG Y H, et al. Application of unmanned aerial vehicle in civil field in China[J].Flight Dynamics202240(3): 1-6 (in Chinese).
3 罗俊海, 王芝燕. 无人机探测与对抗技术发展及应用综述[J]. 控制与决策202237(3): 530-544.
  LUO J H, WANG Z Y. A review of development and application of UAV detection and counter technology[J]. Control and Decision202237(3): 530-544 (in Chinese).
4 徐燕翔, 裴海龙. 基于无人机的森林火灾检测系统[J]. 计算机工程与设计201839(6): 1591-1596.
  XU Y X, PEI H L. Forest fire detection system based on unmanned aerial vehicle[J]. Computer Engineering and Design201839(6): 1591-1596 (in Chinese).
5 陈传琪.无人直升机传感器和执行器故障的类型与分析[J]. 无人机2022(4): 38-40.
  CHEN C Q. Analysis and type of the sensor and actuator fault of unmanned helicopter [J]. Unmanned Vehicles2022(4): 38-40 (in Chinese).
6 SHAO S Y, CHEN M, ZHANG Y M. Adaptive discrete-time flight control using disturbance observer and neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems201930(12): 3708-3721.
7 CHEN H T, JIANG B, LU N Y. A newly robust fault detection and diagnosis method for high-speed trains[J]. IEEE Transactions on Intelligent Transportation Systems201920(6): 2198-2208.
8 CHEN H T, JIANG B, LU N Y, et al. Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains[J]. IEEE Transactions on Vehicular Technology201867(6): 4819-4830.
9 SHAO X D, HU Q L, SHI Y, et al. Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation[J]. IEEE Transactions on Control Systems Technology202028(2): 574-582.
10 HU Q L, LI B, XIAO B, et al. Finite-time fault-tolerant spacecraft attitude control with torque saturation[M]∥ HU Q L, LI B, XIAO B, et al. Control allocation for spacecraft under actuator faults. Singapore: Springer, 2021: 73-108.
11 GAO H, XIA Y Q, ZHANG J H, et al. Finite-time fault-tolerant output feedback attitude control of spacecraft formation with guaranteed performance[J]. International Journal of Robust and Nonlinear Control202131(10): 4664-4688.
12 SHAO X L, SHI Y, ZHANG W D. Fault-tolerant quantized control for flexible air-breathing hypersonic vehicles with appointed-time tracking performances[J]. IEEE Transactions on Aerospace and Electronic Systems202157(2): 1261-1273.
13 YAN K, REN H P. Fault identification and fault-tolerant control for unmanned autonomous helicopter with global neural finite-time convergence[J]. Neurocomputing2021459: 165-175.
14 范玉梅,杨一栋,王新华.小型无人直升机稳定杆建模与姿态系统设计[J].南京航空航天大学学报20053(6):292-295.
  FAN Y M, YANG Y D, WANG X H. Stabilizer bar modeling of small-size unmanned helicopter and attitude control system design[J]. Journal of Nanjing University of Aeronautics & Astronautics20053(6): 292-295 (in Chinese).
15 NIE Z, CHEN M. Stability and control analysis on a small-scale coaxial helicopter with Bell-Hiller stabilizer bar[J]. Applied Mechanics and Materials2013340: 862-866.
16 CUNHA R, SILVESTRE C. Dynamic modeling and stability analysis of model-scale helicopters with Bell-Hiller stabilizing bar: AIAA-2003-5349[R]. Reston: AIAA, 2003.
17 MOKHTARI S, ABBASPOUR A, YEN K K, et al. Neural network-based active fault-tolerant control design for unmanned helicopter with additive faults[J]. Remote Sensing202113(12): 2396.
18 YANG H L, JIANG B, LIU H H T, et al. Attitude synchronization for multiple 3-DOF helicopters with actuator faults[J]. IEEE/ASME Transactions on Mechatronics201924(2): 597-608.
19 SERRANO M E, GANDOLFO D C, SCAGLIA G J E. Trajectory tracking controller for unmanned helicopter under environmental disturbances[J]. ISA Transactions2020106: 171-180.
20 邵书义, 陈谋, 招启军. 基于干扰观测器的四旋翼无人机离散时间容错控制[J]. 航空学报202041(S2): 724283.
  SHAO S Y, CHEN M, ZHAO Q J. Discrete-time fault-tolerant control for quadrotor UAV based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724283 (in Chinese).
21 于彦波, 胡庆雷, 董宏洋, 等. 执行器故障与饱和受限的航天器滑模容错控制[J]. 哈尔滨工业大学学报201648(4): 20-25.
  YU Y B, HU Q L, DONG H Y, et al. Sliding mode fault tolerant control for spacecraft under actuator fault and saturation[J]. Journal of Harbin Institute of Technology201648(4): 20-25 (in Chinese).
22 方星, 吴爱国, 董娜. 非匹配扰动干扰下的无人直升机轨迹跟踪控制[J]. 控制理论与应用201532(10): 1325-1334.
  FANG X, WU A G, DONG N. Robust trajectory tracking control for unmanned helicopter with mismatched disturbances[J]. Control Theory & Applications201532(10): 1325-1334 (in Chinese).
23 SHEN G H, XIA Y Q, MA D L, et al. Adaptive sliding-mode control for Mars entry trajectory tracking with finite-time convergence[J]. International Journal of Robust and Nonlinear Control201929(5): 1249-1264.
24 YAN K, WU Q X, CHEN M. Robust fault tolerant tracking control for unmanned autonomous helicopter with disturbance[C]∥ 2018 37th Chinese Control Conference. 2018: 375-380.
25 WANG F, MA Z G, GAO H M, et al. Disturbance observer-based nonsingular fast terminal sliding mode fault tolerant control of a quadrotor UAV with external disturbances and actuator faults[J]. International Journal of Control, Automation and Systems202220(4): 1122-1130.
26 WANG B, YU X, MU L X, et al. Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances[J]. Mechanical Systems and Signal Processing2019120: 727-743.
27 BORJA-JAIMES V, ADAM-MEDINA M, GARCíA-MORALES J, et al. Actuator FDI scheme for a wind turbine benchmark using sliding mode observers[J]. Processes202311(6): 1690.
28 YANG H Y, YIN S. Actuator and sensor fault estimation for time-delay Markov jump systems with application to wheeled mobile manipulators[J]. IEEE Transactions on Industrial Informatics202016(5): 3222-3232.
29 CHEN W T, SAIF M. A sliding mode observer-based strategy for fault detection, isolation, and estimation in a class of Lipschitz nonlinear systems[J]. International Journal of Systems Science200738(12): 943-955.
30 LIU C, JIANG B, ZHANG K. Incipient fault detection using an associated adaptive and sliding-mode observer for quadrotor helicopter attitude control systems[J]. Circuits, Systems, and Signal Processing201635(10): 3555-3574.
31 GUO J J, QI J T, WU C. Robust fault diagnosis and fault-tolerant control for nonlinear quadrotor unmanned aerial vehicle system with unknown actuator faults[J]. International Journal of Advanced Robotic Systems202118(2): 17298814211002734.
32 KANTUE P, PEDRO J O. Integrated fault-tolerant control of a quadcopter UAV with incipient actuator faults[J]. International Journal of Applied Mathematics and Computer Science202232(4): 601-617.
33 FU J, CHEN W H, WU Q X. Chattering-free sliding mode control with unidirectional auxiliary surfaces for miniature helicopters[J]. International Journal of Intelligent Computing and Cybernetics20125(3): 421-438.
34 RAPTIS I A, VALAVANIS K P, VACHTSEVANOS G J. Linear tracking control for small-scale unmanned helicopters[J]. IEEE Transactions on Control Systems Technology201220(4): 995-1010.
35 ZHANG J, SWAIN A K, NGUANG S K. Robust sliding mode observer based fault estimation for certain class of uncertain nonlinear systems[J]. Asian Journal of Control201517(4): 1296-1309.
36 EDWARDS C, YAN X G, SPURGEON S K. On the solvability of the constrained Lyapunov problem[C]∥ 2006 American Control Conference. Piscataway: IEEE Press, 2006.
37 YAN X G, EDWARDS C. Robust sliding mode observer-based actuator fault detection and isolation for a class of nonlinear systems[C]∥ Proceedings of the 44th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2006: 987-992.
38 YAN X G, EDWARDS C. Nonlinear robust fault reconstruction and estimation using a sliding mode observer[J]. Automatica200743(9): 1605-1614.
39 UTKIN V I. Sliding modes in control and optimization[M]. Berlin: Springer-Verlag, 1992: 64-65.
40 LI R, CHEN M, WU Q X. Robust control for an unmanned helicopter with constrained flapping dynamics[J]. Chinese Journal of Aeronautics201831(11): 2136-2148.
41 XIAN B, GUO J C, ZHANG Y, et al. Sliding mode tracking control for miniature unmanned helicopters[J]. Chinese Journal of Aeronautics201528(1): 277-284.
42 孙秀云, 方勇纯, 孙宁. 小型无人直升机的姿态与高度自适应反步控制[J]. 控制理论与应用201229(3): 381-388.
  SUN X Y, FANG Y C, SUN N. Backstepping-based adaptive attitude and height control of a small-scale unmanned helicopter[J]. Control Theory & Applications201229(3): 381-388 (in Chinese).
文章导航

/