流体力学与飞行力学

大型客机刚弹耦合分析技术研究及验证

  • 毛昆 ,
  • 荆武兴 ,
  • 陈石 ,
  • 刘军 ,
  • 吴大卫 ,
  • 司江涛
展开
  • 1.哈尔滨工业大学 航天学院,哈尔滨 150001
    2.上海飞机设计研究院,上海 201210
E-mail: maokunhao@126.com

收稿日期: 2024-07-22

  修回日期: 2024-10-22

  录用日期: 2024-12-04

  网络出版日期: 2024-12-12

基金资助

省部级项目

Research and verification of rigid-elastic coupling analysis technology for large passenger aircraft

  • Kun MAO ,
  • Wuxing JING ,
  • Shi CHEN ,
  • Jun LIU ,
  • Dawei WU ,
  • Jiangtao SI
Expand
  • 1.School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
    2.Shanghai Aircraft Design and Research Institute,Shanghai 201210,China
E-mail: maokunhao@126.com

Received date: 2024-07-22

  Revised date: 2024-10-22

  Accepted date: 2024-12-04

  Online published: 2024-12-12

Supported by

Provincial or Ministerial Level Project

摘要

现代大型客机的刚体运动模态频率和弹性模态频率之间的差距越来越小,其在机动过程中的刚弹耦合问题也愈发明显。传统的六自由度飞行动力学仿真无法模拟这种刚弹耦合过程,这无论是对于控制律的优化,或者是飞行训练模拟器的研制都是不利的。通过分析大型客机的基本运动特征,选用平均轴系法对传统六自由度飞行动力学方程进行了扩展,搭建了大型客机的刚弹耦合飞行动力学仿真模型,既继承了原有的仿真体系,又大大简化了分析过程。同时,利用该刚弹耦合仿真模型分析了大型客机典型的俯仰机动和滚转机动下的刚弹耦合问题,与试飞结果进行了对比,验证了刚弹耦合仿真模型的准确性,并利用该模型研究了大型客机的典型俯仰及滚转机动条件下的刚弹耦合特征以及刚弹耦合对动稳定性及弹性模态的影响特性。

本文引用格式

毛昆 , 荆武兴 , 陈石 , 刘军 , 吴大卫 , 司江涛 . 大型客机刚弹耦合分析技术研究及验证[J]. 航空学报, 2025 , 46(12) : 130972 -130972 . DOI: 10.7527/S1000-6893.2024.30972

Abstract

The difference in the frequency of rigid-body mode and the elastic mode of modern large passenger aircraft is becoming smaller, and the problem of rigid-elastic coupling during maneuvering is becoming increasingly apparent. Traditional flight dynamics simulation with six degrees of freedom cannot simulate this rigid-elastic coupling process, which is unfavorable for the optimization of control laws or the development of flight training simulators. By analyzing the basic motion characteristics of large passenger aircraft, we use the mean axis system method to extend the traditional flight dynamics equation, and construct a rigid-elastic coupling flight dynamics simulation model for large passenger aircraft, significantly simplifying the analysis process while inheriting the original simulation system. Meanwhile, the rigid-elastic coupling simulation model is used to analyze the typical rigid-elastic coupling problem of large passenger aircraft under pitch and roll maneuvers, with comparison with flight test results to verify the accuracy of the model. The model is then adopted to study the rigid-elastic coupling characteristics of large passenger aircraft under typical pitch and roll maneuvers, as well as the impact characteristics of rigid-elastic coupling on dynamic stability and elastic modes.

参考文献

[1] SCHWANZ R, CERR J, BLAIR M. Dynamic modeling uncertainty affecting control system design?[C]?∥25th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1984.
[2] WASZAK M R, SCHMIDT D K. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft198825(6): 563-571.
[3] SCHMIDT D, RANEY D. Modeling and simulation of flexible flight vehicles[C]?∥AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 1998.
[4] MEIROVITCH L. Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates[J]. Journal of Guidance, Control, and Dynamics199114(5): 1008-1013.
[5] 荣吉利, 徐天富, 王玺, 等. 随动推力作用下柔性旋转飞行器稳定性分析[J]. 宇航学报201536(1): 18-24.
  RONG J L, XU T F, WANG X, et al. Dynamic stability analysis of flexible spinning flight vehicles under follower thrust[J]. Journal of Astronautics201536(1): 18-24 (in Chinese).
[6] 郭东, 徐敏, 陈士橹. 弹性飞行器飞行动力学建模研究[J]. 空气动力学学报201331(4): 413-419, 436.
  GUO D, XU M, CHEN S L. Research on flight dynamic modeling of highly flexible aircrafts[J]. Acta Aerodynamica Sinica201331(4): 413-419, 436 (in Chinese).
[7] 陈尔康, 廖欣, 高长生, 等. 考虑刚体运动与弹体变形耦合效应的旋转导弹动力学建模[J]. 兵工学报201839(11): 2159-2171.
  CHEN E K, LIAO X, GAO C S, et al. Dynamics modeling of spinning missiles considering the rigid-elastic coupling effect[J]. Acta Armamentarii201839(11): 2159-2171 (in Chinese).
[8] SALTARI F, RISO C, DE MATTEIS G, et al. Finite-element-based modeling for flight dynamics and aeroelasticity of flexible aircraft[J]. Journal of Aircraft201754(6): 2350-2366.
[9] RISO C, MASTRODDI F, CESNIK C E. Coupled flight dynamics and aeroelasticity of very flexible aircraft based on commercial finite element solvers?[C]?∥2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018.
[10] XIE C C, YANG L, LIU Y, et al. Stability of very flexible aircraft with coupled nonlinear aeroelasticity and flight dynamics[J]. Journal of Aircraft201755(2): 862-874.
[11] 刘宝, 章卫国, 李广文, 等. 弹性飞机的建模与模型降阶方法研究[J]. 计算机仿真200825(5): 29-32, 43.
  LIU B, ZHANG W G, LI G W, et al. Research on modeling and model reduction of flexible aircraft[J]. Computer Simulation200825(5): 29-32, 43 (in Chinese).
[12] 曹奇凯, 曾惠华, 柏楠. 考虑刚体/弹性耦合的飞机动稳定性研究[J]. 飞行力学201129(4): 11-14, 18.
  CAO Q K, ZENG H H, BAI N. Dynamic stability of aircraft with rigid and flexible motion coupling[J]. Flight Dynamics201129(4): 11-14, 18 (in Chinese).
[13] 王立波, 唐矗, 杨超. 大展弦比飞翼刚弹耦合运动稳定性分析[J]. 西北工业大学学报201735(6): 1096-1104.
  WANG L B, TANG C, YANG C. Dynamic stability analysis of a flying wing considering the rigid-elastic coupling effects[J]. Journal of Northwestern Polytechnical University201735(6): 1096-1104 (in Chinese).
[14] 王培涵, 吴志刚, 杨超, 等. 一种适用于弹性飞机飞行仿真的补丁方法[J]. 航空学报202344(6): 127038.
  WANG P H, WU Z G, YANG C, et al. Patch module method for flight simulation of flexible aircraft[J]. Acta Aeronautica et Astronautica Sinica202344(6): 127038 (in Chinese).
[15] MARIN P C, POETSCH C. Simulation of flexible aircraft response to gust and turbulence for flight dynamics investigations[C]?∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
[16] ALBANO E, RODDEN W P. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows[J]. AIAA Journal19697(2): 279-285.
[17] GIESING J, KALMAN T. Subsonic unsteady aerodynamics for general configurations?[C]?∥10th Aerospace Sciences Meeting. Reston: AIAA, 1972.
[18] MAO K, JING W X, CHENG P, et al. A modification to the enhanced correction factor technique for the subsonic wing-body interference model?[J]. Aerospace202310(1): 40.
[19] MAO K, JING W X, ZHANG M H, et al. An aerodynamic correction technique for the unsteady subsonic wing-body interference model[J]. Aerospace202310(10): 837.
[20] KARPEL M. Extensions to the minimum-state aeroelastic modeling method[J]. AIAA Journal199129(11): 2007-2009.
[21] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005:288-324.
  FANG Z P, CHEN W C, ZHANG S G. Flight dynamics of aircraft[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2005: 288-324 (in Chinese).
文章导航

/