气动推力矢量喷管研究近况和发展趋势

  • 徐惊雷 ,
  • 黄帅 ,
  • 潘睿丰 ,
  • 张玉琪
展开
  • 南京航空航天大学

收稿日期: 2024-09-18

  修回日期: 2024-11-30

  网络出版日期: 2024-12-05

基金资助

国家科技重大专项;国家科技重大专项;国家科技重大专项;基础加强计划项目;国家自然科学基金重点项目;中国博士后科学基金资助项目;江苏省自然科学基金;中央高校基本科研业务费专项资金;先进航空动力创新工作站;航空发动机及燃气轮机基础科学中心项目;江苏省“卓博计划”

Research and development trends of fluidic thrust vectoring nozzle

  • XU Jing-Lei ,
  • HUANG Shuai ,
  • PAN Rui-Feng ,
  • ZHANG Yu-Qi
Expand

Received date: 2024-09-18

  Revised date: 2024-11-30

  Online published: 2024-12-05

摘要

推力矢量技术是未来飞行器特别是军用飞行器的关键技术,可以提高飞行器机动性和操纵性,辅助飞行器进行配平。其核心部件是推力矢量喷管。气动推力矢量喷管通过流动控制实现喷管出口气流偏转,具有固定几何、结构简单、作动部件少、低可探测性好等诸多优势,并可进一步衍生出短距/垂直起降、反推等多种功能以适应更丰富的应用场景。通过数十年的研究,气动推力矢量喷管逐步经历了概念设想、初步探索、机理研究和工程实验等阶段,不断提高了其技术成熟度,正朝着初步工程应用发展。本文着重介绍了近年来具有代表性的国内外研究团队在多种气动推力矢量喷管上的研究成果,探讨了气动推力矢量喷管的发展趋势和未来研究重点,以期为气动推力矢量喷管技术的应用提供参考。

本文引用格式

徐惊雷 , 黄帅 , 潘睿丰 , 张玉琪 . 气动推力矢量喷管研究近况和发展趋势[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31216

Abstract

Thrust vectoring technology is a key technology for future aircraft, especially military aircraft. It can improve maneuverability and controllability, and assist in aircraft balancing. The core component of the technology is the thrust vectoring nozzle. The fluidic thrust vectoring nozzle achieves airflow deflection at the nozzle outlet, which has many advantages such as fixed geometry, simple structure, few actuating components, low detectability, etc. It can further derive various functions such as short distance/vertical takeoff and landing and reversing thrust to adapt to more diverse application scenarios. Through decades of research, the fluidic thrust vectoring nozzle has gradually gone through stages such as conceptual conception, preliminary exploration, mechanism research, and engineering experiments, continuously improving its technological maturity and developing towards preliminary engineering applications. This article focuses on the research achievements of recent years by representative domestic and foreign research teams in various aerodynamic thrust vectoring nozzles. It explores the development trends and future research priorities of fluidic thrust vectoring nozzles, in order to provide reference for the application of fluidic thrust vectoring nozzle technology.

参考文献

[1] 王海峰.战斗机推力矢量关键技术及应用展望[J].航空学报,2020,41(06):20-43+3.
WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aero-nautica et Astronautica Sinica, 2020, 41(6) :20-43+3. (in Chinese)
[2] 崔祚,汪阳生.飞行器推力矢量喷管研究综述[J].飞航导弹,2021,(12):158-167.
Cui Zuo, Wang Yangsheng. Review of research on thrust vectoring nozzles for aircraft [J]. Aerial Mis-siles, 2021, (12): 158-167. (in Chinese)
[3] S. Huang, J.L. Xu, K.K. Yu, et al.. Design and exper-imental study of a bypass dual throat nozzle with the ability of short/vertical takeoff and landing [J]. Aero-space Science and Technology, 2022, 121:107301.
[4] 王玉新.喷气发动机轴对称推力矢量喷管[M].北京:国防工业出版社,2006.
Wang Yuxin. Axial symmetric thrust vectoring nozzle for jet engines [M]. Beijing: National Defense Indus-try Press, 2006. (in Chinese)
[5] Walker S. Lessons learned in the development of a national cooperative program, AIAA-1997-3348[R]. Reston: AIAA, 1997.
[6] 连永久. 射流推力矢量控制技术研究[J]. 飞机设计, 2008, 28(2): 19-24.
Lian Yongjiu. Fluidic thrust vectoring techniques re-search[J]. Aircraft Design, 2008, 28 (2): 19-24. (in Chinese)
[7] 贾东兵, 周吉利, 邓洪伟. 固定几何气动矢量喷管技术综述[J]. 航空发动机, 2012, 38(6): 29-33
Jia Dongbing, Zhou Jili, Deng Hongwei. Summary of Fluidic Control Fixed Geometry Nozzle Technolo-gy[J]. Aircraft Engine, 2012, 38 (6): 29-33. (in Chi-nese)
[8] 肖中云, 江雄, 牟斌, 等. 气动推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15.
Xiao Zhongyun, Jiang Xiong, Mou Bin, et al. Review of research on aerodynamic thrust vectoring technol-ogy[J]. Experimental Fluid Dynamics, 2017, 31 (4): 8-15. (in Chinese)
[9] 史经纬,王占学,梁爽.激波矢量控制喷管技术分析[J].航空动力,2023,(02):71-74.
Shi Jingwei, Wang Zhanxue, Liang Shuang. Tech-nical Analysis of Shock Vector Control Nozzle[J]. Aerospace Power, 2023, (02):71-74. (in Chinese)
[10] Zmijanovic, V., Leger, L., Lago, V., Sellam, M., and Chpoun, A.. Experimental and Numerical Study of Thrust-Vectoring Effects by Transverse Gas Injection into a Propulsive Axisymmetric C-D Nozzle, AIAA - 2012-3874,[R]. Atlanta:AIAA,2012.
[11] Zmijanovic, V., Lago, V., Sellam, M., and Chpoun, A.. Thrust Shock Vector Control of an Axisymmetric Conical Supersonic Nozzle via Secondary Transverse Gas Injection[J]. Shock Waves, 2014, 24(1):97–111.
[12] Vladeta Zmijanovic, Luc Leger, et al., Experimental-Numerical Parametric Investigation of a Rocket Noz-zle Secondary Injection Thrust Vectoring[J]. Journal of Propulsion and Power, 2016, 32(1):196-213.
[13] 史经纬,王占学,刘增文,等.二次流喷口形状对激波矢量控制喷管推力矢量特性影响[J].航空动力学报,2013,28(12):2678-2684.
Shi Jingwei, Wang Zhanxue, Liu Zengwen, et al. Ef-fects of secondary injection forms on thrust vector performance of shock vector controlling nozzle[J]. Journal of Aerospace Power, 2013, 28 (12): 2678-2684. (in Chinese)
[14] 史经纬,王占学,周莉,等.激波矢量喷管二次流喷口形态影响研究[J].工程热物理学报,2014,35(11):2173-2177.
Shi Jingwei, Wang Zhanxue, Zhou Li, et al. Study on the influence of secondary flow nozzle morphology of shock vectoring nozzle [J]. Journal of Engineering Thermophysics, 2014, 35 (11): 2173-2177. (in Chi-nese)
[15] 史经纬.固定几何气动矢量喷管流动机理及性能评估技术研究[D].西安:西北工业大学,2015.
Shi Jingwei. Investigation on flow mechanism and performance estimation of fixed geometric thrust vectoring nozzle[D]. Xian: Northwestern Polytech-nical University, 2015. (in Chinese)
[16] SHI Jing-wei, WANG Zhan-xue, et. al. Investigation on a hybrid SVC nozzle and coupling performance estimation with aero-engine, AIAA-2017-5059[R]. Atlanta: AIAA, 2017.
[17] Liang Shuang,Shi Jingwei,Wang Zhanxue. Influ-ence of aft deck on the flow characteristics of a ser-pentine shock vector control nozzle[J]. Transactions of Nanjing University of Aeronautics and Astro-nautics,2023,40(1):13?24.
[18] 曹永飞. 射流推力矢量控制[D]. 南京:南京航空航天大学, 2012.
Cao Yongfei. Jet thrust vectoring control [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[19] 韩杰星. 流体矢量喷管内外流耦合研究[D]. 南京:南京航空航天大学, 2018.
Han Jiexing. Study on the coupling of internal and external flow in fluid vectoring nozzle [D] Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
[20] Shi N X, Gu Y S, Zhou Y H, Wang Y, Li Z. Experi-mental investigation on the transient process of jet de-flection controlled by passive secondary flow[J]. Journal of Visualization, 2022, 25:967-981.
[21] Zhou Y., Gu Y., Li L., et al. Research on fluidic thrust vector technology based on passive secondary flow with dual inclined walls under low subsonic speed [J]. Experimental Thermal and Fluid Science, 2024, 155:111-200.
[22] Chi S, Gu Y. Experimental Investigation on Jet Vec-tor Deflection Jumping Phenomenon of Coanda Ef-fect Nozzle[J]. Applied Sciences, 2022, 12(15): 7567.
[23] 冯潮,顾蕴松,方瑞山,等. 水下无源流体推力矢量喷管流动特性研究[J]. 实验流体力学, 2022, 37(X): 1-9.
FENG C,GU Y S,FANG R S,et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics, 2022, 37(X): 1-9.
[24] 赵雄. 基于无源流体推力矢量喷管的飞行器控制技术实验研究[D]. 南京:南京航空航天大学, 2018.
Zhao Xiong Experimental study on aircraft control technology based on passive fluid thrust vectoring nozzle [D]. Nanjing:Nanjing University of Aero-nautics and Astronautics, 2018.
[25] 龚东升, 顾蕴松, 周宇航, 史楠星. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 106-117.
Gong Dongsheng, Gu Yunsong, Zhou Yuhang, Shi Nanxing. Control law of passive fluid thrust vector-ing nozzle based on thermal jet of micro turbojet en-gine [J]. Journal of Aeronautics, 2020, 41 (10): 106-117. (in Chinese)
[26] 龚东升. 基于微型涡喷发动机的无源流体推力矢量喷管的研究[D]. 南京:南京航空航天大学,2020.
Gong Dongsheng. Research on Passive Fluid Thrust Vectoring Nozzle Based on Micro Vortex Jet En-gine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
[27] 王怡, 顾蕴松, 周宇航, 史楠星.分段式无源流体推力矢量喷管线性控制特性研究[J]. 实验流体力学, 2023, 38(0): 1-12.
Wang Yi, Gu Yunsong, Zhou Yuhang, Shi Nanxing Research on Linear Control Characteristics of Seg-mented Passive Fluid Thrust Vectoring Nozzle [J]. Journal of Experiments in Fluid Mechanics, 2023, 38(0): 1-12. (in Chinese)
[28] Deere, K. A., Berrier, B. L., Flamm, J. D., et al. Computational Study of Fluidic Thrust Vectoring Us-ing Separation Control in a Nozzle, AIAA 2003-3803[R]. Orlando: AIAA, 2003.
[29] Deere, K. A., Berrier, B. L., Flamm, J. D., et al. A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept, AIAA 2005-3502[R].Tucson: AIAA, 2005.
[30] Flamm, J. D., Deere, K. A., Mason, M. L., et al. Ex-perimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Air-craft Application , AIAA 2007-5084 [R]. Cincinnati: AIAA, 2007.
[31] 李明. 双喉道气动矢量喷管特性研究[D]. 南京: 南京航空航天大学, 2011.
Li Ming. Research on the Characteristics of Double Throat Aerodynamic Vector Nozzle [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
[32] 范志鹏, 徐惊雷, 郭帅. 次流通道对双喉道气动矢量喷管的性能影响研究[J]. 推进技术, 2014, 35(9): 1174-1180.
Fan Zhipeng, Xu Jinglei, Guo Shuai. Study on the in-fluence of secondary flow channel on the perfor-mance of dual throat aerodynamic vectoring nozzle Advancing Technology[J]. Journal of propulsion technology. 2014, 35 (9): 1174-1180. (in Chinese)
[33] 范志鹏, 徐惊雷, 汪阳生. 下游喉道对双喉道气动矢量喷管气动性能的影响[J]. 航空动力学报, 2015, 30(3): 580-587.
Fan Zhipeng, Xu Jinglei, Wang Yangsheng. The in-fluence of downstream throat on the aerodynamic performance of dual throat aerodynamic vectoring nozzle[J]. Journal of Aerospace Power, 2015, 30 (3): 580-587. (in Chinese)
[34] 顾瑞. 新型双喉道气动矢量喷管机理与关键技术研究[D]. 南京: 南京航空航天大学, 2013.
Gu Rui. Research on the Mechanism and Key Tech-nologies of a New Double Throat Pneumatic Vector Nozzle [D]. Nanjing: Nanjing University of Aero-nautics and Astronautics, 2013. (in Chinese)
[35] Ru Gu, Jinglei Xu, Shuai Guo. Experimental and Numerical Investigations of a Bypass Dual Throat Nozzle[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(8): 084501.
[36] Ru Gu, Jinglei Xu. Effects of Cavity on the Perfor-mance of Dual Throat Nozzle During the Thrust-Vectoring Starting Transient Process[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(8): 014502.
[37] 林泳辰. 新型流体矢量喷管的实际应用研究[D].南京:南京航空航天大学, 2019.
Lin Yongchen. Research on the practical application of a new type of fluid vectoring nozzle [D] .Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
[38] 黄帅, 徐惊雷, 牛彦沣, 等. 具有垂直起降功能的喉道偏移式气动矢量喷管及控制方法:中国, ZL 201510515978.6[P]. 2015-12-09
Huang Shuai, Xu Jinglei, Niu Yanfeng, et. al. A throat offset aerodynamic vectoring nozzle with vertical takeoff and landing function and its control method: China,ZL 201510515978.6[P]. 2015-12-09. (in Chi-nese)
[39] 黄帅. 新型气动矢量喷管的拓展研究[D].南京:南京航空航天大学, 2017.
Huang Shuai Research on the Expansion of a New Pneumatic Vector Nozzle [D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
[40] 黄帅,徐惊雷,潘睿丰,等. 具有短距/垂直起降功能的机械-气动复合式矢量喷管:中国, ZL 202010981171.2[P]. 2021-01-15.
Huang Shuai, Xu Jinglei, Pan Ruifeng, et. al. A me-chanical pneumatic hybrid vectoring nozzle with short takeoff and landing/vertical takeoff and landing capabilities: China, ZL 202010981171.2[P]. 2021-01-15. (in Chinese)
[41] 黄帅,徐惊雷,宋光韬,等. 基于准轴对称喉道偏移式气动矢量喷管的旋转垂直起降喷管及其设计方法: 中国, ZL 202010979937.3[P]. 2021-03-05.
Huang Shuai, Xu Jinglei, Song Guangtao, et al. Ro-tating vertical takeoff and landing nozzle based on quasi axisymmetric throat offset aerodynamic vector-ing nozzle and its design method: China, ZL 202010979937.3[P]. 2021-03-05. (in Chinese)
[42] 肖焱毅,徐惊雷,黄帅,等. 基于非轴对称拉瓦尔喷管的双轴承旋转矢量喷管及其设计方法:中国, CN 202410214412.9[P]. 2024-06-07.
Xiao Yanyi, Xu Jinglei, Huang Shuai, et. al. Double bearing rotating vectoring nozzle based on non ax-isymmetric Laval nozzle and its design method: Chi-na, CN 202410214412.9[P]. 2024-06-07. (in Chinese)
[43] 李瑶,徐惊雷,潘睿丰,张玉琪,黄帅.双轴承旋转喷管型面设计及数值模拟研究[J].推进技术, 2024,45(05):100-111.
Li Yao, Xu Jinglei, Pan Ruifeng, Zhang Yuqi, Huang Shuai. Design and numerical simulation of dual bear-ing rotating nozzle profile [J=]. Journal of Propulsion Technology, 2024,45(05):100-111.. (in Chinese)
[44] 李瑶. 超椭圆型面双喉道推力矢量喷管设计方法及应用探究[D]. 南京:南京航空航天大学,2024.
Li Yao. Design Method and Application Exploration of Super Elliptical Double Throat Thrust Vectoring Nozzle[D]. Nanjing: Nanjing University of Aero-nautics and Astronautics, 2024. (in Chinese)
[45] 黄帅. 新型多功能气动矢量喷管的研究[D]. 南京:南京航空航天大学, 2022.
Huang Shuai. Research on a new multifunctional aerodynamic vectoring nozzle [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. (in Chinese)
[46] Yuqi Zhang et al. Numerical investigation of short takeoff and landing exhaust system using bypass dual throat nozzle[J]. Aerospace Science and Technology., 2023(138): 108316.
[47] 张玉顶,徐惊雷,潘睿丰,张玉琪,黄帅.反推改型气动矢量喷管设计及数值模拟[J/OL].航空动力学报, 2022. (2023-05-24) [2024-9-11]. https://doi.org/10.13224/j.cnki.jasp.20220905.
Zhang Yuding, Xu Jinglei, Pan Ruifeng, Zhang Yuqi, Huang Shuai. Design and number of reverse engi-neering modified aerodynamic vectoring nozzle Val-ue Simulation [J/OL]. Journal of Aerospace Power, 2022. (2023-05-24) [2024-9-11]. https://doi.org/10.13224/j.cnki.jasp.20220905. (in Chinese)
[48] 张玉顶,徐惊雷,黄帅,等. 具有反推功能的喉道偏移式气动矢量喷管: 中国, CN 202310324736.3[P]. 2023-06-23.
Zhang Yuding, Xu Jinglei, Huang Shuai, et al. A throat offset aerodynamic vectoring nozzle with re-verse thrust function: China, CN 202310324736.3[P]. 2023-06-23. (in Chinese)
[49] 张玉顶.具有反推功能的新型气动矢量喷管研究[D]. 南京:南京航空航天大学,2023.
Zhang Yuding. Research on a New Pneumatic Vector Nozzle with Reverse Propulsion Function[D]. Nan-jing: Nanjing University of Aeronautics and Astro-nautics, 2023. (in Chinese)
[50] 黄帅,徐惊雷,汪阳生,等. 黄帅,徐惊雷,汪阳生,蒋晶晶,陈匡世,汪丰. 具有非对称后体型面的喉道偏移式气动矢量喷管: 中国, ZL 201811579093.2[P]. 2019-05-07.
Huang Shuai, Xu Jinglei, Wang Yangsheng, et al. Throat offset aerodynamic vectoring nozzle with asymmetric back profile: China, ZL 201811579093.2[P]. 2019-05-07. (in Chinese)
[51] 潘睿丰,徐惊雷,黄帅,等. 一种出口具有锯齿形固体突片的喉道偏移式气动矢量喷管:中国, ZL 201910315699.3[P]. 2019-08-02.
Pan Ruifeng, Xu Jinglei, Huang Shuai, et al. A throat offset aerodynamic vectoring nozzle with tab modifi-cation: China, ZL 201910315699.3[P]. 2019-08-02. (in Chinese)
[52] 徐惊雷,蒋晶晶,黄帅,等. 一种平行四边形截面的喉道偏移式气动矢量喷管:中国, ZL 201811606280.5[P]. 2019-05-21.
Xu Jinglei, Jiang Jingjing, Huang Shuai, et al. A throat offset aerodynamic vectoring nozzle with a parallelogram cross-section: China, ZL 201811606280.5[P]. 2019-05-21. (in Chinese)
[53] 徐惊雷,黄帅,成前,等.一种椭圆形喉道偏移式气动矢量喷管的设计方法:中国, ZL 202110585390.3[P]. 2021-09-10.
Xu Jinglei, Huang Shuai, Cheng Qian, et al. Design method of elliptical throat offset aerodynamic vector-ing nozzle, China: ZL 202110585390.3[P]. 2021-09-10. (in Chinese)
[54] 李瑶, 徐惊雷,黄帅,等.一种双喉道推力矢量喷管的改进方法:中国, ZL 202210066658. 7[P]. 2022-05-13.
Li Yao, Xu Jinglei, Huang Shuai, et al. An improved method of dual throat thrust vectoring nozzle: China, ZL 202210066658.7[P]. 2022-05-13. (in Chinese)
[55] J. Jiang, J. Xu, S. Huang, Y. Wang, R. Pan. Numeri-cal study of bypass dual throat nozzle with parallelo-gram cross-section[J]. Journal of Aerospace Power, 2020, 35(04) : 138–147.
[56] R. Pan, J. Xu, S. Huang, et. al. The Analysis of Mix-ing Enhancement Ability of a Bypass Dual Throat Nozzle with Single/Multi-Tabs[J/OL]. Heat transfer engineering, 2024. (2024-07-03) [2024-09-11]. https://doi.org/10.1080/01457632.2024.2368430.
[57] S. Huang et al. Numerical study of a trapezoidal bypass dual throat nozzle[J]. Chinese Journal of Aer-onautics, 2023, 36(03): 42-62.
[58] R. Pan, J. Xu, Y. Zhang, Y. Li, S. Huang. Design and research of a bypass dual throat nozzle with tab modi-fication[J]. Aerospace Science and Technology, 2024, 144:108816.
[59] 黄帅,徐惊雷,俞凯凯,等. 一种机械扰动式喉道偏移式气动矢量喷管: 中国, ZL 201910845848.7[P]. 2020-01-07.
Huang Shuai, Xu Jinglei, Yu Kaikai, et al. A mechan-ical disturbance throat offset aerodynamic vectoring nozzle: China, ZL 201910845848.7 [P]. 2020-01-07. (in Chinese)
[60] 汪阳生. 新型气动矢量喷管流动机理与智能调节研究[D]. 南京: 南京航空航天大学, 2020.
Wang Yangsheng. Research on the Flow Mechanism and Intelligent Regulation of a New Pneumatic Vector Nozzle [D]. Nanjing: Nanjing University of Aero-nautics and Astronautics, 2020. (in Chinese)
[61] 林泳辰,徐惊雷,韩杰星,等.气动推力矢量无舵面飞翼的飞行实验[J].航空动力学报,2019,34(3):701-707.
Lin Yongcheng, Xu Jinglei, Han Jiexing, et. al. Flight test of a fluidic thrust vectoring flying wing without rudder [J]. Journal of Aerospace Power, 2019,34(3):701-707. (in Chinese)
文章导航

/