考虑巡航攻角的三维内转进气道设计与分析

  • 郑晓刚 ,
  • 胡占仓 ,
  • 蔡泽君 ,
  • 施崇广 ,
  • 朱呈祥 ,
  • 尤延铖
展开
  • 1. 厦门大学
    2. 厦门大学航空航天学院

收稿日期: 2024-09-19

  修回日期: 2024-11-28

  网络出版日期: 2024-11-29

基金资助

国家自然科学基金;国家自然科学基金;博士后科学基金资助项目

Design and analysis of the 3D inward-turning inlet under the cruising angle of attack

  • ZHENG Xiao-Gang ,
  • HU Zhan-Cang ,
  • CAI Ze-Jun ,
  • SHI Chong-Guang ,
  • ZHU Cheng-Xiang ,
  • YOU Yan-Cheng
Expand

Received date: 2024-09-19

  Revised date: 2024-11-28

  Online published: 2024-11-29

摘要

头部进气的吸气式高超声速飞行器巡航状态多保持特定攻角飞行,导致常规不考虑攻角设计的三维内转进气道长时间工作于非设计攻角下,进气道性能下降明显。为此,将局部偏转吻切方法由外流进一步拓展至内流,提出了考虑巡航攻角的三维内转进气道设计方法。该方法将内转进气道分成激波决定段与压力分布决定段两部分,通过同时指定入射激波曲面和各流面内沿程压力分布,实现了给定来流攻角条件下的全三维内收缩流动的快速逆向求解。研究结果表明,基于该方法设计的进气道能够在巡航攻角下较为精准的复现预设计激波与内收缩流场,进气道激波封口特性良好,实现全流量捕获。与常规不考虑攻角设计的进气道相比,考虑攻角设计的内转进气道在保证压缩性能基本一致的情况下,无黏流量捕获系数提升1.94%,喉道处无黏总压恢复系数提升6.56%。考虑粘性后,流量捕获系数提升1.90%,喉道处总压恢复系数提升6.69%,而隔离段出口的总压恢复系数则提升7.13%。

本文引用格式

郑晓刚 , 胡占仓 , 蔡泽君 , 施崇广 , 朱呈祥 , 尤延铖 . 考虑巡航攻角的三维内转进气道设计与分析[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31233

Abstract

Air-breathing hypersonic vehicles with a head intake system typically cruise at a specific angle of attack for higher lift-to-drag characteristics. However, it can cause the 3D inward-turning inlet, designed without considering the angle of attack, to operate at off-design conditions for extended periods, which results in a noticeable decline in inlet performance. To solve this problem, the local-turning osculating cones (LTOCs) method is extended from external flow to internal flow, and a three-dimensional inward-turning inlet design method under the cruising angle of attack is then proposed. In this method, the inward-turning inlet is divided into the shock-based and pressure-based segments, derived by specifying the incident 3D shock wave and the streamwise wall pressure distributions in each stream surface respectively. Numerical results demonstrate that the newly proposed method can accurately re-produce the preassigned shock waves and internal flowfield under the cruising angle of attack, thereby resulting in full mass flow capture. Compared with the inlet without considering the angle of attack, the inviscid mass-flow-capture coefficient of the inlet de-signed under the cruising angle of attack is improved by 1.94%, and the inviscid total pressure recovery coefficient at the throat section is improved by 6.56% when the compression performances of two inlets are essentially identical. Under the viscous conditions, the mass-flow-capture coefficient is augmented by 1.90%, the total pressure recovery coefficient at the throat section is enhanced by 6.69%, and the total pressure recovery coefficient at the isolator’s exit section is elevated by 7.13%.

参考文献

[1] CHOI Y, YOST M F, LERNER E W, et al. Scramjet performance computed for a JP-7-fueled generic X-51 vehicle[J]. Journal of Propulsion and Power, 2022, 38(3): 348-358.
[2] DING F, LIU J, SHEN C, et al. An overview of wa-verider design concept in airframe/inlet integration meth-odology for air-breathing hypersonic vehicles[J]. Acta Astronautica, 2018, 152: 639-656.
[3] VOLAND R T, HUEBNER L D, MCCLINTON C R. X-43A hypersonic vehicle technology development[J]. Acta Astronautica, 2006, 59(1-5): 181-191.
[4] BERTIN J J, CUMMINGS R M. Fifty years of hyper-sonics: where we've been, where we're going[J]. Pro-gress in Aerospace Sciences, 2003, 39(6-7): 511-536.
[5] ZUO F Y, MOLER S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle en-gines[J]. Progress in Aerospace Sciences, 2019, 106: 108-144.
[6] 张堃元. 高超声速进气道曲面压缩技术综述[J]. 推进技术, 2018, 39(10): 2227-2235.
ZHANG K Y. Review on curved surface compression technology of hypersonic inlet[J]. Journal of Propulsion Technology, 2018, 39(10): 2227-2235 (in Chinese).
[7] CHANG J, LI N, XU K, et al. Recent research progress on unstart mechanism, detection and control of hyperson-ic inlet[J]. Progress in Aerospace Sciences, 2017, 89: 1-22.
[8] MA Y, GUO M, TIAN Y, et al. Recent advances and prospects in hypersonic inlet design and intelligent optimization[J]. Aerospace Science and Technology, 2024: 108953.
[9] QIAO W Y, YU A Y, GAO W, et al. Design method with controllable velocity direction at throat for inward-turning inlets[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1403-1415.
[10] 王卫星, 朱婷, 张仁涛, 等. 高超声速内转式进气道型面流场重构[J]. 航空学报, 2020, 41(3): 178-187.
WANG W X, ZHU T, et al. Flow field reconstruction of hypersonic inward turning inlet based on configura-tion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123493 (in Chinese).
[11] SMART M K, TREXLER C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape tran-sition[J]. Journal of Propulsion and Power, 2004, 20(2): 288-293.
[12] SURAWEERA M V, SMART M K. Shock-tunnel exper-iments with a Mach 12 rectangular-to-elliptical shape-transition scramjet at offdesign conditions[J]. Journal of Propulsion and Power, 2009, 25(3): 555-564.
[13] GOLLAN R J, SMART M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Jour-nal of Propulsion and Power, 2013, 29(4): 832-838.
[14] 尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3): 252-256.
YOU Y C, LIANG D W, HUANG G P. Investigation of internal waverider-derived hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(3): 252-256 (in Chinese).
[15] YOU Y C, LIANG D W. Design concept of three-dimensional section controllable internal waverider hy-personic inlet[J]. Science in China Series E: Technologi-cal Sciences, 2009, 52(7): 2017-2028.
[16] ZHU C X, ZHANG H F, HU Z C, et al. Analysis on the low speed performance of an inward-turning multiduct inlet for turbine-based combined cycle engines[J]. Inter-national Journal of Aerospace Engineering, 2019, 2019: 1-10.
[17] GUO F, LIU M, HE G Z, et al. Analysis and suppres-sion of thrust trap for turbo-ramjet mode transition with the integrated optimal control method[J]. Aerospace, 2023, 10(8): 667.
[18] 朱伟, 张堃元, 南向军. 壁面马赫数分布规律可控的新型内收缩基准流场设计方法[J]. 推进技术, 2013 34(4): 433-438.
ZHU W, ZHANG K Y, NAN X J. Investigation on basic flowfield with controlled Mach number gradient for hypersonic inward turning inlets[J]. Journal of Pro-pulsion Technology, 2013 34(4): 433-438 (in Chinese).
[19] 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016, 37(10): 2970-2979.
LI Y Z, ZHANG K Y, SUN D. Experimental investiga-tion on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribu-tion[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 2970-2979 (in Chinese).
[20] 王晓峰, 屈峰, 付俊杰, 等. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023 44(19): 128352.
WANG X F, QU F, FU J J, et al. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128352 (in Chinese).
[21] MUSA O, HUANG G P, YU Z H. Assessment of new pressure-corrected design method for hypersonic internal waverider intake[J]. Acta Astronautica, 2022, 201: 230-246.
[22] MUSA O, HUANG G P, YU Z H. Evaluation of the pressure-corrected osculating axisymmetric flows meth-od for designing hypersonic wavecatcher intakes with shape transition[J]. Journal of Aerospace Engineering, 2024, 37(3): 04024023.
[23] 许耀宇, 黄河峡, 谭慧俊, 等. 高超声速飞行器前体/进气道一体化起动设计回顾与展望[J]. 空天技术, 2024, (2): 15-38.
XU Y Y, HUANG H X, TAN H J, et al. Retrospect and prospect on the aerodynamic integration of hypersonic aircraft forebody/inlet[J]. Aerospace Technology, 2024, (2): 15-38 (in Chinese).
[24] QIAO W Y, YU A Y, WANG Y H. An inverse design method for non-uniform flow inlet with a given shock wave[J]. Acta Mathematicae Applicatae Sinica, English Series, 2019, 35(2): 287-304.
[25] 郑晓刚, 李中龙, 李怡庆, 等. 曲锥前体/内转进气道一体化设计与试验研究[J]. 实验流体力学, 2019, 33(5): 29-35, 48..
ZHENG X G, LI Z L, LI Y Q, et al. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 28-35, 48 (in Chinese).
[26] XIONG B, FAN X Q, WANG Y. Design and evaluation of a conical hypersonic vehicle with an overturned aero-dynamic layout[J]. Aerospace Science and Technology, 2021, 118: 106979.
[27] HE X Z, ZHOU Z, QIN S, et al. Design and experi-mental study of a practical osculating inward cone wa-verider inlet[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1582-1590.
[28] 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018, 39(10): 122078.
QIAO W Y, YU A Y, YANG D W, et al. Integration de-sign of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122078 (in Chinese).
[29] LI Y Q, ZHENG X G, SHI C G, et al. Integration of inward-turning inlet with airframe based on dual-waverider concept[J]. Aerospace Science and Technology, 2020, 107: 106266.
[30] 郑晓刚, 林德寿, 方啸雷, 等. 基于局部偏转吻切方法的背部进气高超声速飞行器一体化设计研究[J]. 空天技术, 2023, (5): 1-10.
ZHENG X G, LIN D S, FANG X L, et al. Research on the integration design of hypersonic vehicles with dorsal inlets based on the local-turning osculating cones meth-od[J]. Aerospace Technology, 2023, (5): 1-10 (in Chi-nese).
[31] KOTHARI A, TARPLEY C, MCLAUGHLIN T, et al. Hypersonic vehicle design using inward turning flow fields[C]//32nd Joint Propulsion Conference and Exhibit. 1996: 2552.
[32] WALKER S, RODGERS F, PAULL A, et al. Hy-CAUSE flight test program[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2008: 2580.
[33] 周航, 金志光. 非均匀来流下三维激波反问题的微元密切轴对称解法[J]. 航空学报, 2020, 41(12): 124305.
ZHOU H, JIN Z G. Micro osculating axisymmetric flow method for 3D shock wave design under nonuniform flows[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124305 (in Chinese).
[34] ZHOU H, JIN Z G. A novel approach for inverse design of three-dimensional shock waves under non-uniform flows[J]. Acta Astronautica, 2020, 176: 324-331.
[35] ZHENG X G, HU Z C, LI Y Q, et al. Local-turning osculating cones method for waverider design[J]. AIAA Journal, 2020, 58(8): 3499-3513.
[36] ZHENG X G, LI Y Q, ZHU C X, et al. Multiple osculat-ing cones’ waverider design method for ruled shock sur-faces[J]. AIAA Journal, 2020, 58(2): 854-866.
[37] JONES K D, CENTER K. Waverider design methods for non-conical shock geometries[C]. 3rd Theoretical Fluid Mechanics Meeting. Reston, Virigina: AIAA, 2002.
[38] 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43-59.
QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59.
[39] 谭慧俊, 黄河峡, 卜焕先, 等. 一种高超声速内转式进气道的内通道设计方法: CN105205220A[P]. 2015-12-30.
TAN H J, HUANG H X, BU H X, et al. An internal channel design method for hypersonic inward-turning inlet: China. CN105205220A[P]. 2015-12-30 (in Chi-nese).
[40] HERRMANN C, KOSCHEL W. Experimental investi-gation of the internal compression inside a hypersonic in-take[C]//38th AIAA/ASME/SAE/ASEE Joint Propul-sion Conference & Exhibit. 2002: 4130.
文章导航

/