[1] CHOI Y, YOST M F, LERNER E W, et al. Scramjet performance computed for a JP-7-fueled generic X-51 vehicle[J]. Journal of Propulsion and Power, 2022, 38(3): 348-358.
[2] DING F, LIU J, SHEN C, et al. An overview of wa-verider design concept in airframe/inlet integration meth-odology for air-breathing hypersonic vehicles[J]. Acta Astronautica, 2018, 152: 639-656.
[3] VOLAND R T, HUEBNER L D, MCCLINTON C R. X-43A hypersonic vehicle technology development[J]. Acta Astronautica, 2006, 59(1-5): 181-191.
[4] BERTIN J J, CUMMINGS R M. Fifty years of hyper-sonics: where we've been, where we're going[J]. Pro-gress in Aerospace Sciences, 2003, 39(6-7): 511-536.
[5] ZUO F Y, MOLER S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle en-gines[J]. Progress in Aerospace Sciences, 2019, 106: 108-144.
[6] 张堃元. 高超声速进气道曲面压缩技术综述[J]. 推进技术, 2018, 39(10): 2227-2235.
ZHANG K Y. Review on curved surface compression technology of hypersonic inlet[J]. Journal of Propulsion Technology, 2018, 39(10): 2227-2235 (in Chinese).
[7] CHANG J, LI N, XU K, et al. Recent research progress on unstart mechanism, detection and control of hyperson-ic inlet[J]. Progress in Aerospace Sciences, 2017, 89: 1-22.
[8] MA Y, GUO M, TIAN Y, et al. Recent advances and prospects in hypersonic inlet design and intelligent optimization[J]. Aerospace Science and Technology, 2024: 108953.
[9] QIAO W Y, YU A Y, GAO W, et al. Design method with controllable velocity direction at throat for inward-turning inlets[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1403-1415.
[10] 王卫星, 朱婷, 张仁涛, 等. 高超声速内转式进气道型面流场重构[J]. 航空学报, 2020, 41(3): 178-187.
WANG W X, ZHU T, et al. Flow field reconstruction of hypersonic inward turning inlet based on configura-tion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123493 (in Chinese).
[11] SMART M K, TREXLER C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape tran-sition[J]. Journal of Propulsion and Power, 2004, 20(2): 288-293.
[12] SURAWEERA M V, SMART M K. Shock-tunnel exper-iments with a Mach 12 rectangular-to-elliptical shape-transition scramjet at offdesign conditions[J]. Journal of Propulsion and Power, 2009, 25(3): 555-564.
[13] GOLLAN R J, SMART M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Jour-nal of Propulsion and Power, 2013, 29(4): 832-838.
[14] 尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3): 252-256.
YOU Y C, LIANG D W, HUANG G P. Investigation of internal waverider-derived hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(3): 252-256 (in Chinese).
[15] YOU Y C, LIANG D W. Design concept of three-dimensional section controllable internal waverider hy-personic inlet[J]. Science in China Series E: Technologi-cal Sciences, 2009, 52(7): 2017-2028.
[16] ZHU C X, ZHANG H F, HU Z C, et al. Analysis on the low speed performance of an inward-turning multiduct inlet for turbine-based combined cycle engines[J]. Inter-national Journal of Aerospace Engineering, 2019, 2019: 1-10.
[17] GUO F, LIU M, HE G Z, et al. Analysis and suppres-sion of thrust trap for turbo-ramjet mode transition with the integrated optimal control method[J]. Aerospace, 2023, 10(8): 667.
[18] 朱伟, 张堃元, 南向军. 壁面马赫数分布规律可控的新型内收缩基准流场设计方法[J]. 推进技术, 2013 34(4): 433-438.
ZHU W, ZHANG K Y, NAN X J. Investigation on basic flowfield with controlled Mach number gradient for hypersonic inward turning inlets[J]. Journal of Pro-pulsion Technology, 2013 34(4): 433-438 (in Chinese).
[19] 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016, 37(10): 2970-2979.
LI Y Z, ZHANG K Y, SUN D. Experimental investiga-tion on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribu-tion[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 2970-2979 (in Chinese).
[20] 王晓峰, 屈峰, 付俊杰, 等. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023 44(19): 128352.
WANG X F, QU F, FU J J, et al. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128352 (in Chinese).
[21] MUSA O, HUANG G P, YU Z H. Assessment of new pressure-corrected design method for hypersonic internal waverider intake[J]. Acta Astronautica, 2022, 201: 230-246.
[22] MUSA O, HUANG G P, YU Z H. Evaluation of the pressure-corrected osculating axisymmetric flows meth-od for designing hypersonic wavecatcher intakes with shape transition[J]. Journal of Aerospace Engineering, 2024, 37(3): 04024023.
[23] 许耀宇, 黄河峡, 谭慧俊, 等. 高超声速飞行器前体/进气道一体化起动设计回顾与展望[J]. 空天技术, 2024, (2): 15-38.
XU Y Y, HUANG H X, TAN H J, et al. Retrospect and prospect on the aerodynamic integration of hypersonic aircraft forebody/inlet[J]. Aerospace Technology, 2024, (2): 15-38 (in Chinese).
[24] QIAO W Y, YU A Y, WANG Y H. An inverse design method for non-uniform flow inlet with a given shock wave[J]. Acta Mathematicae Applicatae Sinica, English Series, 2019, 35(2): 287-304.
[25] 郑晓刚, 李中龙, 李怡庆, 等. 曲锥前体/内转进气道一体化设计与试验研究[J]. 实验流体力学, 2019, 33(5): 29-35, 48..
ZHENG X G, LI Z L, LI Y Q, et al. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 28-35, 48 (in Chinese).
[26] XIONG B, FAN X Q, WANG Y. Design and evaluation of a conical hypersonic vehicle with an overturned aero-dynamic layout[J]. Aerospace Science and Technology, 2021, 118: 106979.
[27] HE X Z, ZHOU Z, QIN S, et al. Design and experi-mental study of a practical osculating inward cone wa-verider inlet[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1582-1590.
[28] 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018, 39(10): 122078.
QIAO W Y, YU A Y, YANG D W, et al. Integration de-sign of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122078 (in Chinese).
[29] LI Y Q, ZHENG X G, SHI C G, et al. Integration of inward-turning inlet with airframe based on dual-waverider concept[J]. Aerospace Science and Technology, 2020, 107: 106266.
[30] 郑晓刚, 林德寿, 方啸雷, 等. 基于局部偏转吻切方法的背部进气高超声速飞行器一体化设计研究[J]. 空天技术, 2023, (5): 1-10.
ZHENG X G, LIN D S, FANG X L, et al. Research on the integration design of hypersonic vehicles with dorsal inlets based on the local-turning osculating cones meth-od[J]. Aerospace Technology, 2023, (5): 1-10 (in Chi-nese).
[31] KOTHARI A, TARPLEY C, MCLAUGHLIN T, et al. Hypersonic vehicle design using inward turning flow fields[C]//32nd Joint Propulsion Conference and Exhibit. 1996: 2552.
[32] WALKER S, RODGERS F, PAULL A, et al. Hy-CAUSE flight test program[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2008: 2580.
[33] 周航, 金志光. 非均匀来流下三维激波反问题的微元密切轴对称解法[J]. 航空学报, 2020, 41(12): 124305.
ZHOU H, JIN Z G. Micro osculating axisymmetric flow method for 3D shock wave design under nonuniform flows[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124305 (in Chinese).
[34] ZHOU H, JIN Z G. A novel approach for inverse design of three-dimensional shock waves under non-uniform flows[J]. Acta Astronautica, 2020, 176: 324-331.
[35] ZHENG X G, HU Z C, LI Y Q, et al. Local-turning osculating cones method for waverider design[J]. AIAA Journal, 2020, 58(8): 3499-3513.
[36] ZHENG X G, LI Y Q, ZHU C X, et al. Multiple osculat-ing cones’ waverider design method for ruled shock sur-faces[J]. AIAA Journal, 2020, 58(2): 854-866.
[37] JONES K D, CENTER K. Waverider design methods for non-conical shock geometries[C]. 3rd Theoretical Fluid Mechanics Meeting. Reston, Virigina: AIAA, 2002.
[38] 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43-59.
QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59.
[39] 谭慧俊, 黄河峡, 卜焕先, 等. 一种高超声速内转式进气道的内通道设计方法: CN105205220A[P]. 2015-12-30.
TAN H J, HUANG H X, BU H X, et al. An internal channel design method for hypersonic inward-turning inlet: China. CN105205220A[P]. 2015-12-30 (in Chi-nese).
[40] HERRMANN C, KOSCHEL W. Experimental investi-gation of the internal compression inside a hypersonic in-take[C]//38th AIAA/ASME/SAE/ASEE Joint Propul-sion Conference & Exhibit. 2002: 4130.