考虑性能退化的载荷谱修正方法

  • 袁思思 ,
  • 牛序铭 ,
  • 孙志刚 ,
  • 宋迎东
展开
  • 1. 南京航空航天大学
    2. 南京航空航天大学能源与动力学院

收稿日期: 2024-09-30

  修回日期: 2024-11-16

  网络出版日期: 2024-11-18

基金资助

国家科技重大专项;自然科学基金

Load spectrum correction method considering performance degradation

  • YUAN Si-Si ,
  • NIU Xu-Ming ,
  • SUN Zhi-Gang ,
  • SONG Ying-Dong
Expand

Received date: 2024-09-30

  Revised date: 2024-11-16

  Online published: 2024-11-18

Supported by

National Science and Technology Major Project;National Natural Science Foundation of China

摘要

发动机性能退化往往引起性能参数发生改变,进而导致完成相同飞行任务时载荷谱发生变化,对发动机结构寿命预测造成影响。目前,整机寿命试车载荷谱编制过程中尚未考虑性能退化因素影响,导致寿命试车结果与外场存在较大误差。针对这一问题,构建了综合整机性能退化与动态性能修正的涡扇发动机模型,重点研究了考虑磨损、蠕变的叶尖间隙预测方法对发动机性能的动态修正,提出了一种考虑性能退化的涡扇发动机载荷谱修正方法。同时对典型飞行任务剖面下的载荷谱进行了计算,结果表明:发动机在运行3000循环后,动态性能修正模型的高压涡轮进口温度较传统模型升高0.69%;修正后的载荷谱与原谱相比,其最大状态的高压轴转速降低4.90%、高压涡轮进口温度上升2.95%,最大状态持续时间增加21.05%,实现了考虑性能退化的载荷谱修正目标。

本文引用格式

袁思思 , 牛序铭 , 孙志刚 , 宋迎东 . 考虑性能退化的载荷谱修正方法[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31312

Abstract

The performance degradation of the engine often causes the change of the performance parameters, which leads to the change of the load spectrum to complete the same mission, and affects the life prediction of the engine structure. At present, the above factors have not been considered in the process of compiling the load spectrum of the whole machine life test, resulting in a large error between the life test results and the external field. Aiming at this problem, based on the construction of a turbofan engine model that integrates overall performance degradation and dynamic performance correction, a load spectrum correction method for turbofan engine con-sidering performance degradation is proposed. Among them, the dynamic correction of engine performance by tip clearance predic-tion method considering wear and creep was mainly studied. At the same time, the engine load spectrum under typical flight mission profile was calculated. The results show that after 3000 cycles of engine operation, the inlet temperature of the high-pressure turbine of the dynamic performance correction model in this paper is 0.69 % higher than that of the traditional model. Compared with the original spectrum, the corrected load spectrum has a 4.90 % reduction in the maximum state of the high-pressure shaft speed, a 2.95 % increase in the high-pressure turbine inlet temperature, and a 21.05 % increase in the maximum state duration. The goal of load spectrum correction considering performance degradation was achieved.

参考文献

[1] 马双员, 张永峰. 航空发动机载荷谱综述[J]. 现代机械, 2011(05):15-17+35. https://link.cnki.net/doi/10.13667/j.cnki.52-1046/th.2011.05.023. MA S Y. ZHANG Y F. Overview of AeroengineLoading Spectrum[J]. Modern Machinery, 2011(05):15-17+35. https://link.cnki.net/doi/10.13667/j.cnki.52-1046/th.2011.05.023 [2] 牛序铭, 赵旭, 王飞飞, 等. 基于损伤等效的航空发动机加速任务试车谱编制方法[J]. 推进技术, 2023, 44(02):237–245. https://link.cnki.net/doi/10.13675/j.cnki.tjjs.2207013. NIU X M. ZHAO X. WANG F F. et al. Compiling Method of Aero-Engine Acceleration Mission Test Spectrum Based on Damage Equivalence [J]. Journal of Propulsion Technology, 2023, 44(02):237–245. https://link.cnki.net/doi/10.13675/j.cnki.tjjs.2207013. [3] 史海秋, 赵福星. 某型发动机承力机匣疲劳载荷谱研究[J]. 燃气涡轮试验与研究, 2005(01):41–44. SHI H Q. ZHAO F X. Research on Fatigue Load Spectra of an Engine Supporting-case [J]. Gas Turbine Experiment and Research, 2005(01):41–44. [4] ARNOLD S, KELLY P G. Recent turbine engine ac-celerated mission testing accomplishments at AEDC:2018 Aerodynamic Measurement Technology and Ground Testing Conference[C], 2018. [5] NAEEM M, SINGH R, PROBERT D. Implications of engine's deterioration upon an aero-engine HP turbine blade's thermal fatigue life[J]. International journal of fatigue, 2000,22(2):147-160. [6] RATH N, MISHRA R K, KUSHARI A. Aero engine health monitoring, diagnostics and prognostics for condition-based maintenance: An overview[J]. Interna-tional Journal of Turbo & Jet-Engines, 2024,40(s1):s279-s292. [7] SUN J Z. YAN Z C. HAN Y. et al. "Deep learning framework for gas turbine performance digital twin and degradation prognostics from airline operator per-spective." Reliability Engineering & System Safety 238 (2023): 109404[J]. [8] 郭庆, 黄启廉, 陈金亮. 基于部件特性图优化的民航发动机性能退化建模[J]. 北京航空航天大学学报2023:1–14. https://link.cnki.net/doi/10.13700/j.bh.1001-5965.2023.0341. GUO Q. HUANG Q L. CHENG J L. Perfor-mance Degradation Modeling of Civil Aviation Engine Based on Component Characteristic Map Optimization [J]. Journal of Beijing University of Aeronautics and Astronautics, 2023:1–14. https://link.cnki.net/doi/10.13700/j.bh.1001-5965.2023.0341. [9] WANG C, TAO H, XU P, et al. The effect of changing the combustion chamber head structure on turbine blades under thermal shock test[J]. International Jour-nal of Thermal Sciences, 2024,205:109260. [10] KHANI N. SEGOVIA C. NAVARATNE R. et al. "Towards development of a Diagnostic and Prognostic tool for civil aero-engine component degradation." Gas Turbine India Conference. Vol. 45165. American Soci-ety of Mechanical Engineers, 2012[J]. [11] WANG C, ZHU Z, LU N, et al. A data-driven degrada-tion prognostic strategy for aero-engine under various operational conditions[J]. Neurocomputing, 2021,462:195-207. [12] 李业波, 李秋红, 黄向华, 等. 航空发动机性能退化缓解控制技术[J]. 航空动力学报, 2012, 27(04):930–936. https://link.cnki.net/doi/10.13224/j.cnki.ja-sp.2012.04.031. LI Y B. LI Q H. HUANG X H. et al. Performance deterioration mitigation control of aero-engine [J]. Journal of Aerospace Power, 2012, 27(04):930–936. https://link.cnki.net/doi/10.13224/j.cnki.jasp.2012.04.031. [13] LI Y, CHEN Y, HU Z, et al. Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models[J]. Reliability Engineering & System Safety, 2023,229:108869. [14] KURZ R, BRUN K. Degradation in Gas Turbine Systems [J]. Journal of Engineering for Gas Turbines and PowerJournal of Engineering for Gas Turbines and Power, 2000,123(1):70-77. [15] 肖俊峰, 伍赫, 高松, 等. 叶顶间隙对多级轴流压气机性能退化的影响[J]. 动力工程学报, 2024, 44(09):1353–1360. https://link.cnki.net/doi/10.19805/j.cnki.jcspe.2024.240193. XIAO J F. WU H. GAO S. et al. Effects of Blade Tip Clearance on Performance Degradation of the Multi-stage Axial Compressor[J]. Journal of Chinese of Power Engineering, 2024, 44(09):1353–1360. https://link.cnki.net/doi/10.19805/j.cnki.jcspe.2024.240193. [16] ZHANG X, XIONG Y, HUANG X, et al. Dynamic modeling of rotary blade crack with regard to three-dimensional tip clearance[J]. Journal of Sound and Vibration, 2023,544:117414. [17] LATTIME S. BRUCE S. "Turbine engine clearance control systems: current practices and future directions." 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2002[J]. [18] 宋丙新, 侯朝山. 某型航空发动机HPT转子叶片叶尖间隙对涡轮流场及性能的影响分析[J]. 航空维修与工程, 2024(02):27–30. https://link.cnki.net/doi/10.19302/j.cnki.1672-0989.2024.02.009. SONG B X. HOU C S. Analysis on the Influence of Clearance Between HPT Rotor Blade Tip and Casing on Flow Field and Performance for a Certain Aero-engine [J]. Aviation Maintenance & Engineering, 2024(02):27–30. https://link.cnki.net/doi/10.19302/j.cnki.1672-0989.2024.02.009. [19] TENG F, ZHANG X, XIE S. Research on variation mechanism of three-dimensional blade tip clear-ance of aero-engine: 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)[C], 2016. IEEE. [20] MA H. TAI X. HAN Q. et al. "A revised model for rubbing between rotating blade and elastic casing." Journal of Sound and Vibration 337 (2015): 301-320[J]. [21] 杨梓佟. 基于热-固耦合的航空发动机碰摩动力学分析[D]. 2023. https://link.cnki.net/doi/10.27627/d.cnki.gzmhy.2023.000302. YANG Z D. Aero-engine Rubbing Dynamics Analysis Based on Thermo-structure Coupling [D]. 2023. https://link.cnki.net/doi/10.27627/d.cnki.gzmhy.2023.000302. [22] YANG Y, MAO J, CHEN P, et al. Prediction and Analysis of Transient Turbine Tip Clearance Using Long Short-Term Memory Neural Network[J]. Journal of Engineering for Gas Turbines and PowerJournal of Engineering for Gas Turbines and Power, 2024,146(10). [23] SHENG H, TONG L, YAN Z, et al. New model-based method for aero-engine turbine blade tip clearance measurement[J]. Chinese Journal of Aeronautics, 2023,36(8):128-147. [24] 何辉, 毛军逵, 刘方圆, 等. 考虑发动机性能退化的涡轮叶尖间隙预估方法研究[J]. 推进技术, 2020, 41(10):2283–2291. https://link.cnki.net/doi/10.13675/j.cnki.tjjs.190680. HE H. MAO J K. LIU F Y. et al. Method of Turbine Tip Clearance Prediction Considering Engine Performance Degradation [J]. Journal of Propulsion Technology, 2020, 41(10):2283–2291. https://link.cnki.net/doi/10.13675/j.cnki.tjjs.190680. [25] JAY A, TODD E S. Effect of steady flight loads on JT9D-7 performance deterioration[R].1978. [26] Ye M, He K, Yan X. Influence of wear damages on aerodynamic and heat transfer performance in squealer tip gap[J]. Applied Thermal Engineering, 2019,159:113976. [27] 徐田镇. 航空发动机退化状态参数估计与控制技术研究[D]. 2017. XU T Z. Research on Degradation Aero-engine’s Parameters Estimation and Control Technology [D]. 2017. [28] CAI C. WANG Y. CHEN H. et al. "Full-envelope acceleration control method of turbofan engine based on variable geometry compound adjustment." Aerospace Science and Technology 128 (2022): 107748[J]. [29] VERBIST M. Gas path analysis for enhanced aero-engine condition monitoring and maintenance[J]. Delft University of Technology, 2017. [30] LITT J S. PARKER K I. CHATTERJEE S. "Adaptive gas turbine engine control for deterioration compensation due to aging." 16th International Symposium on Airbreathing Engines. No. E-14165. 2003[J]. [31] KRATZ J L. CHAPMAN J W. Active turbine tip clearance control trade space analysis of an advanced geared turbofan engine: 2018 Joint Propulsion Conference[C], 2018. [32] KYPUROS J A. MELCHER K J. A reduced model for prediction of thermal and rotational effects on turbine tip clearance[R].2003. [33] SALLEE G P. Performance deterioration based on existing (historical) data; JT9D jet engine diagnostics program. No. NASA-CR-135448. 1978.[J]. [34] 全昌彪, 廖明夫, 米栋, 等. 基于θ映射法的燃气涡轮叶片高温蠕变变形分析[J]. 燃气涡轮试验与研究, 2018, 31(06):25-29+55. QUAN C B. LIAO M F. MI D. et al. High temperature creep deformation analysis of gas turbine blade based on θ-projection method [J]. Gas Turbine Experiment and Research, 2018, 31(06):25-29+55. [35] CHAPMAN J W. GUO T. KRATZ J L. et al. Integrated turbine tip clearance and gas turbine engine simulation: 52nd AIAA/SAE/ASEE Joint Propulsion Conference[C], 2016. [36] NAEEM M. Implications of aero-engine deterioration for a military aircraft's perfor-mance. Diss. Cranfield University, 1999.[J]. [37] JAY A. TODD E S. Effect of steady flight loads on JT9D-7 performance deterioration[R]. 1978.[J]. [38] 聂志强. 短寿涡轮叶片和轮盘的强度分析与寿命预测[D]. 2023. https://link.cnki.net/doi/10.27060/d.cnki.ghbcu.2023.002425. NIE Z Q. Strength Analysis and Life Prediction of Short-life Turbine Blades and Disks [D]. 2023. https://link.cnki.net/doi/10.27060/d.cnki.ghbcu.2023.002425. [39] 《中国航空材料手册》委员会. 中国航空材料手册. 第2卷, 变形高温合金 铸造高温合金[M]. 中国标准出版社, 2002. Committee on Chinese Aeronautical Materials Manual,Manual of Chinese aeronautical materials. Volume 2, Deformation superalloys Casting superalloys, Standards Press of China, 2002. [40] 陆山. 航空发动机结构强度设计与分析[M]. 科学出版社, 2022. LU S. Structural Strength Design and Analysis of Aircraft Engines [M]. Science Press, 2022. [41] JAVIER K A. "A Reduced model for prediction of thermal and rotational effects on turbine tip clearance." [J]. National Aeronautics and Space Administration, Glenn Research Center, NASA TM 212226 (2003)..
文章导航

/