基于肌电和眼动信号的SVO-eVTOL操纵品质评估

  • 李雨函 ,
  • 张曙光 ,
  • 吴义兵
展开
  • 1. 北京航空航天大学
    2. 北京航空航天大学交通科学与工程学院

收稿日期: 2024-09-30

  修回日期: 2024-11-12

  网络出版日期: 2024-11-14

基金资助

国家自然科学基金

Assessing Handling Qualities of SVO-eVTOL through EMG and Eye Data

  • LI Yu-Han ,
  • ZHANG Shu-Guang ,
  • WU Yi-Bing
Expand

Received date: 2024-09-30

  Revised date: 2024-11-12

  Online published: 2024-11-14

摘要

随着城市空中交通(Urban Air Mobility, UAM)商业化运输的兴起,简化飞行操纵(Simplified Vehicle Operations, SVO)的概念被引入航空器设计,旨在简化操作流程以适应未来运输需求。然而,基于SVO设计的电动垂直起降飞行器(electric vertical take-off and landing, eVTOL)是否满足适航性条件,以及其操纵界面是否符合人机交互的友好性标准,目前尚存在不确定性。为了解决这一问题,对基于简化操纵设计的eVTOL进行了任务科目基元(Mission task elements, MTE)的实验,以评估其操纵品质。实验共招募了20名被试,通过库珀-哈珀量表收集了他们对eVTOL操纵品质的主观评分,并进行了半结构化访谈,同时记录了他们的眼动数据和肌电数据。本研究在结合主观评估和可解释的手工特征的基础上,提出了基于格拉米角场法和卷积神经网络的操纵品质评估模型。研究结果表明,不良的操纵界面设计显著影响了参与者的肌电信号和眼动信号。基于此结论设计的卷积神经网络模型能够以93.67%的准确率评估eVTOL的操纵品质。研究不仅为航空器操纵品质的客观评估提供了新的视角,而且为未来简化操纵eVTOL的设计提供了重要的改进依据。

本文引用格式

李雨函 , 张曙光 , 吴义兵 . 基于肌电和眼动信号的SVO-eVTOL操纵品质评估[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31315

Abstract

With the advent of commercial transportation in Urban Air Mobility (UAM), the concept of Simplified Vehicle Operations (SVO) has been integrated into aircraft design, aiming to streamline operational procedures to meet future transport de-mands. However, there is uncertainty regarding whether electric vertical take-off and landing (eVTOL) aircraft, which de-signed based on SVO, meet airworthiness criteria and whether their control interfaces adhere to ergonomic standards for user-friendliness. To address this issue, an experiment on Mission Task Elements (MTE) was conducted to assess the han-dling qualities of an SVO-based eVTOL. 20 participants were recruited for the experiment, during which their subjective ratings of handling qualities using Cooper-Harper Rating Scale, qualitative comments through semi-structured interviews, and electromyography (EMG) data and eye-tracking data were recorded. Additionally, a handling qualities assessment mod-el based on Gramian Angular Field (GAF) and 2D-convolutional neural networks (2D-CNN) was proposed. The results indi-cated that poor control interface design significantly affected the participants' EMG and eye-tracking signals. Benefiting from the spatio-temporal information provided by GAF images, the proposed 2D-CNN reached a classification accuracy of 93.67%. This study provides a new perspective for the objective assessment of eVTOL handling qualities and offers signif-icant guidance for the future design of SVO.

参考文献

[1] 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937-529937. DENG J H. Technical status and development of elec-tric vertical take?off and landing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937-529937 (in Chinese). [2] FURUZAWA J C, FREGNANI J A T G. Simplified Ve-hicle Operations (SVO)[C]//Proceeding of World Aviation Training Summit. Orlando: Halldale Group, 2022. [3] Team Skyryse. Robinson R66 vs. Skyryse One Heli-copter – What’s the Difference? [EB/OL]. (2024-8-29) [2024-09-25]. https://www.skyryse.com/resources [4] LAMBAERTS T, KANESHIGE J, FEARY M. Control Concepts for Simplified Vehicle Operations of a Quadrotor eVTOL Vehicle[C]//Proceeding of AIAA Aviation Forum. Virtual: American Institute of Aero-nautics and Astronautics, 2020. [5] CHAKRABORTY I, COMER A, BHANDARI R, et al. Piloted Simulation-Based Assessment of Simplified Vehicle Operations for Urban Air Mobility[J]. Aero-space Information Systems, 2024, 21(5). [6] FEARY M. Humans, Autonomy, and eVTOLs[C]// Proceeding of Association for Unmanned Vehicle Systems International Conference: From VTOL to eVTOL. San Carlos: Association for Unmanned Vehi-cle Systems International (AUVSI), 2018. [7] European Union Aviation Safety Agency. Special Condition for VTOL and Means of Compliance[S]. 2024. [8] GARCIA G D, SEIFERTH D, MEIDINGER V, et al. Conduction of Mission Task Elements within Simu-lator Flight Tests for Handling Quality Evaluation of an eVTOL Aircraft [C]//Proceeding of AIAA Scitech Forum. Virtual: American Institute of Aeronautics and Astronautics, 2021. [9] 冯传宴,完颜笑如,刘双,等. 负荷条件下注意力分配策略对情景意识的影响[J]. 航空学报, 2020, 41(3): 123307-123307. FENG C Y, WANYAN X R, LIU S, et al. Influence of different attention allocation strategies under work-loads on situation awareness[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123307-123307 (in Chinese) [10] KIM Y W, JI Y G. Designing for Trust: How Human-Machine Interface Can Shape the Future of Urban Air Mobility [J]. International Journal of Human–Computer Interaction, 2024. [11] WILSON G F. An Analysis of Mental Workload in Pilots During Flight Using Multiple Psychophysio-logical Measures[J]. The International Journal of Aviation Psychology, 2009, 12(1): 3-18. [12] 王崴,赵敏睿,高虹霓,等. 基于脑电和眼动信号的人机交互意图识别[J]. 航空学报, 2021, 42(2): 324290-324290. WANG W, ZHAO M, GAO H, et al. Human-computer interaction: Intention recognition based on EEG and eye tracking[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 324290-324290 (in Chinese). [13] 马菲,张琼,赖培军,等. 基于BP神经网络的试飞训练安全性量化模型[J]. 航空学报, 2024, 45(5): 529957-529957. MA F, ZHANG Q, LAI P, et al. BP neural net-work?based quantitative classification model for safety in experimental flight training[J]. Acta Aero-nautica et Astronautica Sinica, 2024, 45(5): 529957-529957 (in Chinese). [14] LI H, WANG X, LIU C, et al. Integrating multi-domain deep features of electrocardiogram and phonocardio-gram for coronary artery disease detection[J]. Com-puters in Biology and Medicine, 2021, 138. [15] LI Y, ZHANG S, HE R, et al. Objective Detection of Trust in Automated Urban Air Mobility: A Deep Learning-Based ERP Analysis[J]. Aerospace, 2024, 11(3): 174. [16] DOLLINGER D, REISS P F, ANGELOV J, et al. Control Inceptor Design for Onboard Piloted Transition VTOL Aircraft Considering Simplified Vehicle Oper-ation[C] // Proceeding of AIAA Scitech Forum. Virtu-al: American Institute of Aeronautics and Astro-nautics, 2021. [17] DOLLINGER D, FRICKE, HOLZAPFEL F, et al. Control Inceptor Design for Remote Control of a Transition UAV[C] // Proceeding of AIAA Aviation Forum. Vir-tual: American Institute of Aeronautics and Astro-nautics, 2019. [18] ZINTL M, MARB M M, WECHNER M, et al. Develop-ment of a Virtual Reality Simulator for eVTOL Flight Testing[C]//Proceeding of AIAA Aviation Forum. Virtual: American Institute of Aeronautics and As-tronautics, 2024. [19] KLYDE D, SCHULZE P C, MITCHELL D, et al. Mis-sion Task Element Development Process: An Ap-proach to FAA Handling Qualities Certification[C] // Proceeding of AIAA Scitech Forum. Virtual: Ameri-can Institute of Aeronautics and Astronautics, 2020. [20] WECHNER M, MARB M M, ZINTL M, et al. Design, Conduction and Evaluation of Piloted Simulation Mission Task Element Tests for Desired Behavior Validation of an eVTOL Flight Control System[C] // Proceeding of AIAA Aviation Forum. Chicago & Vir-tual: American Institute of Aeronautics and Astro-nautics, 2022. [21] HERATH N, HERATH M, THILAKANAYAKE T, et al. An Image-Based Disaggregation Study of Time Se-ries Energy Data Using Gramian Angular Field[C] // Proceeding of 15th Asia-Pacific Power and Energy Engineering Conference. Chiang Mai: IEEE, 2023. [22] FOODY G M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification [J]. Remote Sensing of Environment, 2020, 239. [23] XU B, WANG X, SUN F C, et al. Intelligent Control of Flexible Hypersonic Flight Dynamics With In-put Dead Zone Using Singular Perturbation Decom-position [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9):5926-5936. [24] FAUZI A, SYARIF I, BADRIYAH T. Develop-ment of a Mobile Application for Plant Disease Detection using Parameter Optimization Method in Convolutional Neural Networks Algorithm [J]. Emitter-International Journal of Engineering Technology, 2024, 11(2):192-213.
文章导航

/