动力翼单元松耦合设计方法研究及试验验证

  • 王科雷 ,
  • 周洲 ,
  • 李明浩
展开
  • 1. 陕西省西安市西北工业大学航空学院
    2. 西北工业大学

收稿日期: 2024-09-04

  修回日期: 2024-11-06

  网络出版日期: 2024-11-07

基金资助

装备预研;基础加强计划

Research on loose coupling design method of propulsion wing unit and experimental validation

  • WANG Ke-Lei ,
  • ZHOU Zhou ,
  • LI Ming-Hao
Expand

Received date: 2024-09-04

  Revised date: 2024-11-06

  Online published: 2024-11-07

摘要

基于分布式混合电推进飞行器先进气动布局设计技术研究背景,针对分布式动力翼推进/气动耦合问题,提出了一种面向工程约束的方形涵道风扇单元松耦合设计思路和方法,通过耦合涵道壁面影响的转子叶片设计优化、基于给定转子叶片动量源模型的涵道壁面设计优化两模块的耦合迭代,有效降低设计问题复杂程度,实现对方形涵道风扇单元这种多参数复杂对象悬停特性与前飞特性兼顾的多目标设计优化,最终通过风洞测力和测压试验验证了松耦合设计思路和方法的有效性和可行性。

本文引用格式

王科雷 , 周洲 , 李明浩 . 动力翼单元松耦合设计方法研究及试验验证[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31150

Abstract

Based on the research of distributed hybrid electric propulsion aircraft technology, a loose coupling design approach of rectangle ducted fan unit under engineering constraints is proposed for the propulsive/aerodynamic coupling problem of distributed propulsion wing. Through the coupling iteration of the rotor blade design optimization module influenced by the ducted wall and the duct design optimization module based on a given rotor blade momentum source model, the complexity of the design problem is effectively reduced, and the multi-objective design optimization considering both hovering and forward flight characteristics of the rectangle ducted fan unit is achieved, although the object is so complex a geometry with dozens of parameters. Finally, the effectiveness and feasibility of the present loose coupling design approach are verified through wind tunnel experiments including force and pressure measurements.

参考文献

[1] 陈安强,崔济多,杨志鹏,等. 美国高速垂直起降飞行器预研项目发展及启示[J]. 飞航导弹, 2021, 1: 91-98. Chen A Q, Cui J D, -Yang Z P, et al. Development and enlightenment of the pre research project for high speed vertical takeoff and landing aircraft in the Unit-ed States[J]. Aerodynamic Missile Journal 2021, 1: 91-98 (in Chinese). [2] 王科雷, 周洲, 马悦文, 等. 垂直起降固定翼无人机技术发展及趋势分析[J]. 航空工程进展, 2022, 13(5): 1-13. WANG K L ZHOU Z, MA Y W, et al. Development and trend analysis of vertical takeoff and landing fixed wing UAV[J]. Advances in Aeronautical Science and Engineering, 2022, 13(5): 1-13 (in Chinese). [3] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报, 2021, 42(3): 624037. Huang J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et As-tronautica Sinica, 2021, 42(3): 624037 (in Chinese). [4] 王科雷. 低雷诺数多桨布局滑流耦合的气动优化设计研究[D]. 西安: 西北工业大学博士学位论文, 西安, 2017. Wang K L. Research on aerodynamic optimization design of low-Reynolds-number multi-propeller con-figuration taking into account the slipstream ef-fects[D]. Ph.D. Thesis, Northwestern Polytechnical University, 2017. (in Chinese). [5] 王科雷, 周洲, 祝小平. 耦合多螺旋桨气动影响的低雷诺数机翼设计[J]. 航空学报, 2017, 38(6): 120813. Wang K L, Zhou Z, Zhu X P. Aerodynamic design of low-Reynolds-number wing taking into account the multiple propellers induced effects[J]. Acta Aero-nautica et Astronautica Sinica, 2017, 38(6): 120813 (in Chinese). [6] 王科雷, 周洲, 祝小平, 许晓平. 低雷诺数多螺旋桨/机翼耦合气动设计研究[J]. 航空学报, 2018, 39(8): 121918. Wang K L, ZHOU Z, ZHU X P, XU X P. Multi-propeller/wing coupled aerodynamic design at low Reynolds number[J]. Acta Aeronautica et Astronauti-ca Sinica, 2018, 39(8): 121918 (in Chinese). [7] Srilatha A.. Design of a 4-Seat, General Aviation, Electric Aircraft[D]. Ph.D. Thesis, San Jose: San Jose State University, 2012. [8] Karen A., Sally A., Melissa B., et al. Computational analysis of powered lift augmentation for the LEAPTech distributed electric propulsion wing[R]. AIAA Aviation Forum, Denver, 2017. [9] Patterson M, Borer N, German B. A simple method for high-lift propeller conceptual design[R]. NASA Langley Research Center, 2016, 20160007767. [10] Patterson M. Conceptual design of high-lift propeller systems for small electric aircraft[D]. Ph.D. Thesis, Georgia Institute of Technology, 2016. [11] Bento H F, Vries R D, Veldhuis L L. Aerodynamic performance and interaction effects of circular and square ducted propellers[C]//Orlando: AIAA Scitech 2020 Forum, 2020. [12] 孙蓬勃, 周洲, 郭佳豪. 不同形状涵道风扇推进特性数值分析[J]. 航空动力学报, 2022, 37(12): 2736-2748. Sun P B, Zhou Z, Guo J H. Numerical analysis for propulsion characteristics of ducted fans in different shapes[J]. Journal of Aerospace Power, 2022, 37(12): 2736-2748 (in Chinese). [13] Perry A T, Ansell P J, Kerho M F. Aero-propulsive and propulsor cross-coupling effects on a distributed pro-pulsion system[J]. Journal of Aircraft, 2018, 55(6): 2414-2426. [14] Pieper K, Perry A T, Ansell P J, et al. Design and de-velopment of a dynamically, scaled distributed electric propulsion aircraft testbed[C]//Cincinnati: 2018 AIAA/IEEE Electric Aircraft Technologies Symposi-um, 2018. [15] Yu D, Ansell P J, Hristov G. Aero-propulsive integra-tion effects of an overwing distributed electric propul-sion system[C]//Virtual Event: AIAA Scitech 2021 Forum, 2021. [16] 张阳, 周洲, 郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报, 2021, 42(9): 224977. Zhang Y, Zhou Z, Guo J H. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224977 (in Chinese). [17] 张星雨, 高正红, 雷涛, 等. 分布式电推进飞机气动/推进耦合特性地面试验研究[J]. 航空学报, 2022, 43(8): 125389. Zhang X Y, Gao Z H, Lei T, et al. Ground test on aer-odynamic-propulsion coupling characteristics of dis-tributed electric propulsion aircraft [J]. Acta Aero-nautica et Astronautica Sinica, 2022, 43(8): 125389 (in Chinese). [18] 王海童, 王掩刚, 周芳, 等. 基于面元法的分布式涵道推进系统进气道优化设计[J]. 推进技术, 2021, 42(11): 2465-2473. Wang H T, Wang Y G, Zhou F, et al. Optimization design of inlet for distributed ducted fan propulsion system based on panel method[J]. Journal of Propul-sion Technology, 2021, 42(11): 2465-2473 (in Chi-nese). [19] Guo J H, Zhou Z. Multi-objective design of a distrib-uted ducted fan system[J]. Aerospace, 2022, 9(3): 165. [20] Wang K L, Zhou Z. Aerodynamic design, analysis and validation of a small blended-wing-body unmanned aerial vehicle[J]. Aerospace, 2022, 9(1): 36. [21] 王科雷, 周洲, 郭佳豪, 等. 分布式动力翼前飞状态动力/气动耦合特性分析[J].航空学报, 2024, 45(5): 128643. WANG K L, ZHOU Z, GUO J H, et al. T Analysis on the propulsive/ aerodynamic coupled characteristics of the distribut-ed-propulsion-wing during forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 128643(in Chinese). [22] Kulfan B M. Universal parametric geometry represen-tation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. [23] 李岳锋, 杨青真, 孙志强. 超椭圆S形进气道的设计及气动性能研究[J]. 计算机仿真, 2011, 28(3): 82-85. Li Y F, Yang Q Z, Sun Z Q. Design of super-elliptic S-shaped inlet and analysis of aerodynamic perfor-mance[J]. Computer Simulation, 2011, 28(3): 82-85 (in Chinese). [24] 齐旻, 王占学, 周莉, 等. 唇口几何参数对短舱进气道性能影响数值研究[J]. 推进技术, 2020, 41(9): 2021-2030. Qi Y, Wang Z X, Zhou L. Numerical study on effects of lip geometric parameters on performance of nacelle inlet[J]. Journal of Propulsion Technology, 2020, 41(9): 2021-2030 (in Chinese). [25] 芦殿军. Bezier曲线的拼接及其连续性[J]. 青海大学学报, 2004, 22(6): 84-86. Lu D J. Connection and continuity of the Bezier curve [J]. Journal of Qinghai University, 2004, 22(6): 84-86 (in Chinese). [26] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. [27] 陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报, 2015, 33(4): 554-562. Chen G Q, Bai P, Zhan H L, et al. Numerical simula-tion study on propeller slipstream effect on un-manned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica, 2015, 33(4): 554-562 (in Chi-nese). [28] Rajagopalan R, Fanucci J. Finite-difference model for vertical axis wind rotors[J]. Journal of Propulsion and Power, 1985, 1(6): 432. [29] Tao Z, George N B. High-fidelity CFD validation and assessment of ducted propellers for aircraft propul-sion[J]. Journal of the American Helicopter Society, 2021, 66(1): 1-28. [30] 郭佳豪, 周洲, 李旭. 一种涵道螺旋桨桨叶高效设计方法[J]. 航空学报, 2022, 43(7): 125253. GUO J H, ZHOU Z, LI X. An efficient design method for blade of ducted propeller[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125253 (in Chinese). [31] 郭佳豪, 周洲, 李旭. 对转涵道风扇桨叶高效设计方法[J]. 航空动力学报, 2022, 37(9): 1835-1845. GUO J H, ZHOU Z, LI X. Efficient design method for blades of counter-rotating ducted fan[J]. Journal of Aerospace Power, 2022, 37(9): 1835-1845 (in Chi-nese).
文章导航

/