高马赫条件燃烧室斜爆轰波起爆过程实验研究

  • 张晓源 ,
  • 李进平 ,
  • 马虎 ,
  • 张仕忠 ,
  • 陈硕 ,
  • 陆星宇
展开
  • 1. 中国科学院力学研究所
    2. 南京理工大学

收稿日期: 2024-09-09

  修回日期: 2024-10-31

  网络出版日期: 2024-11-04

基金资助

铝粉在高温水蒸气中点火与燃烧机理研究

Experimental study on the initiation process of oblique detonation wave in combustion chamber under high Mach conditions

  • ZHANG Xiao-Yuan ,
  • LI Jin-Ping ,
  • MA Hu ,
  • ZHANG Shi-Zhong ,
  • CHEN Shuo ,
  • LU Xing-Yu
Expand

Received date: 2024-09-09

  Revised date: 2024-10-31

  Online published: 2024-11-04

摘要

斜爆轰技术具有结构简单、燃烧效率高和比冲高等优点,而实验条件的局限性限制了对斜爆轰的深入理解和该技术的进一步发展。基于反向爆轰驱动激波风洞直连实验系统,模拟了飞行高度30公里、马赫数9的来流条件,针对乙烯燃料进行了25°斜劈的斜爆轰波起爆实验。该系统通过激波管产生高温高压空气,经喷管加速后进入燃烧室,待空气流场建立后喷入燃料,与空气混合起爆。对斜爆轰波的结构特征及起爆过程进行观测与分析,在斜劈处形成了清晰的斜爆轰波系结构,准确识别出斜激波、斜爆轰波、横波和三波点等特征。在波后存在高亮度区域,表明了强烈化学反应的发生。斜爆轰波在实验中稳定时间约为6ms,角度保持在80°±2°范围内,并且实验具有良好的重复性。分析表明,实验中获得的斜爆轰波位于极曲线的过驱动强解区域。实验展示了斜爆轰波的起爆过程:燃料喷注前,斜劈前首先形成稳定的斜激波;燃料喷注后,斜激波与分离激波的交汇位置触发混合燃气起爆;起爆后形成的爆轰波面由化学反应支撑,逐渐向前推进,波面长度不断增加,直至达到稳定状态;最终,激波管内反射激波产生的高压破坏了斜爆轰波结构。

本文引用格式

张晓源 , 李进平 , 马虎 , 张仕忠 , 陈硕 , 陆星宇 . 高马赫条件燃烧室斜爆轰波起爆过程实验研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31167

Abstract

Oblique detonation technology offers significant advantages such as a simple structure, high combustion efficiency, and high specific impulse. However, limitations in ground-based experimental capabilities have hindered a deeper understanding of the oblique detonation and the development of this technology. This paper presents an experiment based on a reverse detonation-driven shock tunnel directly connected system, simulating a flight altitude of 30 km and a Mach number of 9. The experiment investigated the initiation of oblique detonation waves with a wedge angle of 25° using ethylene fuel. The experimental system generates high-temperature and high-pressure air through a shock tube, which is then accelerated through a nozzle into the combustion chamber. Once the air flow field is established, fuel is injected and mixed with the air to initiate detonation. The structural characteristics and initiation process of the oblique detonation waves were observed and analyzed, resulting in the formation of a clear oblique detonation wave structure at the wedge. The features such as oblique shock waves, oblique detonation waves, transverse waves, and triple points were accurately identified. The high-brightness area behind the wave indicated intense chemical reactions. The oblique detonation wave remained stable for approximately 6 milliseconds, with the angle maintained within the range of 80°±2°. The experiments showed good repeatability. Analysis revealed that the experimentally obtained oblique detonation wave falls within the overdriven strong solution region of the extreme curve. The experiment detailed the initiation process of the oblique detonation wave. Before fuel injection, a stable oblique shock wave first formed at the front of the wedge. After fuel injection, the intersection of the oblique shock wave and the separation shock wave trig-gered the initiation of the mixed gas. The detonation wavefront formed post-initiation was sustained by chemical reac-tions, gradually propagating forward with its length continuously increasing until it reached a stable state. Finally, the high pressure generated by the reflected shock wave in the shock tube disrupted the oblique detonation wave struc-ture, concluding the experiment.

参考文献

LEE J. The Detonation Phenomenon[M]. Cam-bridge: Cambridge University Press, 2008:26-52.
[2] KAILASANATH K. Review of Propulsion Applica-tions of Detonation Waves[J]. AIAA Journal, 2000, 38(9): 1698-1708.
[3] MA J Z, LUAN M Y, XIA Z J, et al. Recent Pro-gress, Development Trends, and Consideration of Con-tinuous Detonation Engines[J]. AIAA Journal, 2020, 58(12): 4976–5035.
[4] 范宝春, 张旭东, 潘振华, 等. 用于推进的三种爆轰波的结构特征[J]. 力学进展, 2012, 42(2): 162-169.
FAN B C, ZHANG X D, PAN Z H, et al. Fundamental characteristics of three types of detonation waves uti-lized in propulsion[J]. Advances in Mechanics, 2012, 42(2): 162-169 (in Chinese).
[5] 谭风光, 王可, 于潇栋, 等. 无阀式脉冲爆震火箭发动机运行稳定性实验[J]. 航空学报, 2021, 42(3): 124189.
TAN F G, WANG K, YU X D, et al. Experiment on operation stability of valveless pulse detonation rocket engine[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124189(in Chinese).
[6] 刘卫东, 彭皓阳, 刘世杰, 等.旋转爆震燃烧及应用研究进展[J]. 航空学报, 2023, 44(15): 528875.
LIU W D, PENG H Y, LIU S J, et al. Research pro-gresses of rotating detonation combustion and its appli-cation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528875 (in Chinese).
[7] WU W B, WANG Y N, HAN W B, et al. Experimental re-search on solid fuel pre-combustion rotating detona-tion engine[J]. Acta Astronautica, 2023, 205: 258-266.
[8] Daniel A R, Mason T, Jonathan S, et al. Stabilized detonation for hypersonic propulsion[J]. Proceedings of the National Academy of Sciences, 2021, 118(20): e2102244118.
[9] 苗世坤, 周进, 刘彧, 等.超声速气流中的斜爆震研究进展综述[J]. 实验流体力学, 2019, 33(1): 41-53.
MIAO S K, ZHOU J, LIU Y, et al. Review of studies on oblique detonation waves in supersonic flows[J].Journal of Experiments in Fluid Mechanics, 2019, 33(1): 41-53 (in Chinese).
[10] JIANG Z L Standing oblique detonation for hypersonic propulsion: A review[J]. Progress in Aerospace Scienc-es,2023, 143:100955.
[11] DUNLAP R, BREHM R L, NICHOLLS J A. A prelim-inary study of the application of steady-state detonative combustion to a reaction engine[J]. Journal of Jet Pro-pulsion, 1958:28(7), 451-456.
[12] GROSS R A. Oblique detonation waves[J]. AIAA Journal, 1963, 1(5):1225-1227.
[13] VALORANI M, DI G M, BUONGIORNO C. Perfor-mance prediction for oblique detonation wave engines (ODWE) [J]. Acta Astronautica, 2001, 48(4): 211-228.
[14] 熊皓晨,邱若凡,韩信,等. 一种弯曲激波诱导爆震的起爆新方式[J]. 航空学报, 2024, 45: 129682.
XIONG H C, QIU R F, HAN X, et al. A new method of curved shock wave induced detonation initiation[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45: 129682. (in Chinese). doi: 10.7527/S1000-6893.2023.29682
[15] 黄恩, 史爱明. 斜爆轰波总压规律及其在爆轰发动机分析模型中的应用[J]. 力学学报, 2023, 55(9): 1892-1899.
HUANG E, SHI A M. The law of total pressure of oblique detonation wave and its application in detona-tion engine analysis model[J]. Chinese Journal of Theo-retical and Applied Mechanics, 2023, 55(9): 1892-1899 (in Chinese).
[16] RADULESCE M I, HIGGINS A J, MURRAY S B, et al. An experimental investigation of the direct initiation of cylindrical detonations[J]. Journal of Fluid Mechan-ics. 2003, 480: 1-24.
[17] VERREAULT J, HIGGINS A J. Initiation of detonation by conical projectiles[J]. Proceedings of the Combus-tion Institute, 2011, 33(2): 2311–2318.
[18] QIN J, ZHU D. Criticality for Oblique Detonation Waves Induced by a Finite Wedge in a Hydrogen–Air Mixture[J]. Aerospace, 2023, 10, 508.
[19] PRATT D T, HUMPHREY J W, GLENN D E. Mor-phology of standing oblique detonation waves[J]. Jour-nal of Propulsion and Power, 1991, 7(5): 837–845.
[20] 滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展[J]. 力学进展, 2020, 50(1): 202002.
TENG H H, JIANG Z L. Progress in multi-wave struc-ture and stability of oblique detonations[J]. Advances in Mechanics, 2020, 50(1): 202002 (in Chinese).
[21] WALTER M A T, FIGUEIRA D S L F. Numerical study of detonation stabilization by finite length wedg-es[J]. AIAA Journal, 2006, (2): 53–361.
[22] LIU Y, LIU Y S, Wu D, et al. Structure of an oblique detonation wave induced by a wedge[J]. Shock Waves, 2016, 26(2): 161–168.
[23] TENG H H, TIAN C, ZHANG Y N, et al. Morphology of oblique detonation waves in a stoichiometric hydro-gen–air mixture[J]. Journal of Fluid Mechanics, 2021, 913(A1).
[24] VERREAULT J, HIGGINS A J, STOWE R A. For-mation and structure of steady oblique and conical det-onation waves[J]. AIAA Journal, 2012, 50(8): 1766–1772.
[25] 袁生学, 赵伟, 黄志澄. 驻定斜爆轰波的初步实验观察[J]. 空气动力学学报, 2000, 18(4): 473-477.
YUAN S X, ZHAO W, HUANG Z C. Primary experi-mental observation of standing oblique detonation waves[J]. Acta Aerodynamica Sinica, 2000, 18(4): 473-477 (in Chinese).
[26] SRULIJES J, SMEETS G, SEILER F. Expansion tube experiments for the investigation of ram-accelerator-related combustion and gasdynamic prob-lems[C]//Proceedings of the 28th Joint Propulsion Con-ference and Exhibit. Reston: AIAA, 1992.
[27] DABORA E, BRODA J C. Standing normal detona-tions and oblique detonations for propul-sion[C]//Proceedings of the 29th Joint Propulsion Con-ference and Exhibit, Reston: AIAA, 1993.
[28] VIGUIER C, FIGUEIRA D S L F, DESBORDES D, et al. Onset of oblique detonation waves: Comparison be-tween experimental and numerical results for hydro-gen-air mixtures[C]//Proceedings of the Twenty-Sixth Symposium (International) on Combustion, Amsterdam: Elsevier, 1996: 3023–3031.
[29] STERLING J, CUMMINGS E, GHORBANIAN K, et al. Oblique detonation wave studies in the Caltech T-5 Shock Tunnel Facility[C]//Proceedings of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1998: 282-295.
[30] LIN Z Y, ZHANG J Y, ZHOU J. Design of high-enthalpy pre-mixed supersonic heater and experimental study of oblique detonation[C]//Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007.
[31] 张子健, 韩 信, 马凯夫, 等. 斜爆轰发动机燃烧机理试验研究[J]. 推进技术, 2021, 42(4): 786-794.
ZHANG Z J, HAN X, MA K F, et al. Experimental Research on Combustion Mechanism of Oblique Deto-na-tion Engines[J]. Journal of Propulsion Technology, 2021, 42(4): 786-794 (in Chinese).
[32] JIANG Z L. ZHANG Z J, LIU U, et al. The criteria for hypersonic airbreathing propulsion and its experimental verification[J]. Chinese Journal of Aeronautics, 2021, 34(3): 94-104.
[33] YU H R, CHEN H, ZHAO W. Advances in detonation driving tech-niques for a shock tube/tunnel[J]. Shock Waves, 2006, 15(6): 399–405.
[34] 俞鸿儒. 探索发展激波风洞爆轰驱动技术[J]. 力学学报, 2011, 43(6): 978-983.
YU H R. Development study of detonation driving tech-niques for a shock tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 978-983 (in Chinese).
[35] 崔东明, 范宝春. 用于推进的驻定斜爆轰的基本特征. 宇航学报, 1999, 20(2):48-54.
CUI D M, FAN B C. The essential feature of steady detonation wave using propulsion. Journal of Astro-nautics, 1999, 20(2): 48-54 (in Chinese).
文章导航

/