无人机液氢燃料电池热管理系统仿真研究

  • 虞翔宇 ,
  • 李文 ,
  • 严杰 ,
  • 梁世哲
展开
  • 航空工业成都飞机工业(集团)有限责任公司

收稿日期: 2024-07-18

  修回日期: 2024-11-01

  网络出版日期: 2024-11-04

Simulation research on thermal management system of fuel cell for liquid hydrogen powered UAV

  • YU Xiang-Yu ,
  • LI Wen ,
  • YAN Jie ,
  • LIANG Shi-Zhe
Expand

Received date: 2024-07-18

  Revised date: 2024-11-01

  Online published: 2024-11-04

摘要

燃料电池无人机具有长航时、低红外辐射和绿色低碳等特点,是新型无人机的重要发展方向。针对于无人机燃料电池热管理系统散热量大、散热温差小和热不匹配问题,提出了一种基于液氢存储的无人机燃料电池热管理系统方案和控制策略。该热管理系统充分利用了液氢冷能对燃料电池进行散热,有效解决了燃料电池无人机飞行过程中的热不匹配问题,为无人机液氢燃料电池热管理系统的设计和优化提供了新思路。基于本文建立的液氢无人机热管理系统,对典型无人机飞行工况下的热管理系统工作过程进行了仿真研究,结果表明:(1)基于所研究的无人机平台,所建立的液氢无人机燃料电池热管理系统,在全飞行剖面内可以有效实现燃料电池温度控制。其中电堆出口最高温70℃,最低温14.6℃,巡航阶段温度可以稳定在65℃,且液氢储罐压力稳定控制在0.5MPa±0.04MPa。(2)在全机热载荷最大的无人机爬升阶段引入消耗性氢热沉,可以有效提高系统散热能力,防止爬升过程冷却液超温气化;也可以降低引气面积过大导致的冷却液冻结风险。(3)在热管理系统最低温度一致的前提下,乙二醇水溶液比水携带质量更少,距离凝固点的温差更大,凝固风险更低,但爬升阶段液氢消耗量更多。(4)基于仿真计算结果,提出了液氢消耗量-冷却液质量计算模型,对热管理系统优化设计具有重要的指导意义。

本文引用格式

虞翔宇 , 李文 , 严杰 , 梁世哲 . 无人机液氢燃料电池热管理系统仿真研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.30964

Abstract

With advantages as long endurance, low infrared radiation, low carbon and so on, the fuel cell powered unmanned aerial vehicle (UAV) has become a promising technology for future UAV designs. Considering the high heat loads and small temperature differ-ence during heat exchange, the present study develops a thermal management system and the corresponding control strategy of fuel cell for liquid hydrogen powered UAV. Utilizing the cold energy of liquid hydrogen for fuel cell cooling, the proposed thermal man-agement system effectively provides a new idea for the future design and optimization of UAV thermal management. Based on the proposed thermal management system, simulation research is conducted according to typical flight phases and the capability of ther-mal management system is validated. The results indicate that: (1) Based on the developed thermal management model, the tempera-ture of fuel cell is effectively controlled for each flight phase. The maximum and minimum outlet temperature of the liquid coolant is 70 ℃ and 14.6 ℃, respectively. The liquid coolant temperature at the fuel cell outlet can be maintained at 65 ℃ during cruise. Meanwhile, the internal pressure of liquid hydrogen tank is stably maintained at 0.5 MPa±0.04 MPa. (2) For the takeoff phase which the heat loads reach the maximum value, the expendable hydrogen is applied as heat sink for thermal management. This meth-od can reduce the air intake area, subsequently avoid the liquid coolant freezing at high altitude. (3) Under the premise of consistent minimum temperature in the thermal management system, ethylene glycol aqueous solution carries less mass than water, has a greater temperature difference between the solidification point that has lower solidification risk, but consumes more liquid hydrogen during the climbing phase. (4) Based on the simulation results, the prediction model is proposed for the mass of consumed liquid hydrogen during takeoff. The model has an important significance in optimal design of fuel cell thermal management system for UAV.

参考文献

[1]朱超磊, 金钰, 王靖娴等. 2022年国外军用无人机装备技术发展综述[J]. 战术导弹技术, 2023(3): 11-25. ZHU C L, JIN Y, WANG J X. Overview of the devel-opment of foreign military UAV systems and technology in 2022[J]. Tactical Missile Technology, 2023(3): 11-25 (in Chinese). [2]裴锦华. 民用无人机产业发展动态及其在网络通信领域中的应用[J]. 电信工程技术与标准化, 2017(4): 1-6. PEI J F. Development trends of civil UAV industry and its applications in network & communication field[J]. Telecom Engineering Technics and Standardization, 2017(4): 1-6 (in Chinese). [3]任媛媛, 高一栋, 焦慕卿. 无人机发展应用及反无手段研究[J]. 火控雷达技术, 2022(1): 27-39. REN Y Y, GAO Y D, JIAO M Q. Research on devel-opment and application of UAVs and counter-UAV means[J]. Fire Control Radar Technology, 2022(1): 27-39 (in Chinese). [4]刘铁军. 从十三届珠海航展看中国无人机发展特点及趋势[J]. 中国航天, 2022(4): 8-11. LIU T J. Characteristic and trend of UAV development in China from the 13th Zhuhai Airshow, Aerospace Chi-na, 2022(4): 8-11(in Chinese). [5]祝彬, 陈笑南, 范桃英. 国外超高空长航时无人机发展分析[J]. 中国航天, 2013(11): 28-32. ZHU B, CHEN X N, FAN T Y. Development analysis of foreign ultra-high altitude long endurance UAV. Aero-space China[J], 2013(11): 28-32(in Chinese). [6]刘莉, 杜孟尧, 张晓辉等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报, 2016(1): 144-162. LIU L, DU M Y, ZHANG X H, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astro-nautica Sinica, 2016, 37(1): 1441-62(in Chinese). [7]高彦峰, 宋琦, 谢高峰等. 临近空间无人机液氢供能系统技术分析[J]. 航空工程进展, 2024(2): 11-24. GAO Y F, SONG Q, XIE G F, et al. Analysis of liquid hydrogen power systems for near space unmanned aerial vehicles[J]. Advances in Aeronautical Science and Engi-neering, 2024(2) : 11-24(in Chinese). [8]李广佳, 陈柽, 贾永清等. 临近空间氢动力无人机技术发展与应用分析[D]. 2015第二届中国航空科学技术大会, 2015: 572-576. LI GUANG JIA, CHEN C, JIA Y Q, et al. Develop-ment and application analysis of near space hydrogen powered UAV technology[D]. 2015 2nd China Aviation Science and Technology Conference, 2015: 572-576(in Chinese). [9]徐晨华. 美国非太阳能动力超长航时无人机发展综述[J]. 飞航导弹, 2018(8) :35-41. XU C H. A review of the development of non-solar powered ultra-long endurance UAVs in the United States[J]. Aerodynamic Missile Journal, 2018(8): 35-41(in Chinese). [10]MARQUARDT J, KELLER J, MILLS G, et al. An over-view of ball aerospace cryogen storage and delivery sys-tems[J]. IOP Conference Series: Materials Science and Engineering 101, 2015, 012086: 3-6. [11]刘莉, 曹潇, 张晓辉等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3): 623474. LIU LI, CAO X, ZHANG X H, et al. Review of devel-opment of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. Acta Aeronautica et Astro-nautica Sinica, 2020, 41(3): 623474(in Chinese). [12]张永杰, 王鸿深, 崔博等. 氢能客机低温液氢储罐的装机环境适应性分析研究进展[J/OL]. 航空学报, (2024-04-16)[2024-05-29]. https://link.cnki.net/urlid/11.1929.V.20240115.1621.014. ZHANG YONG JIE, WANG H S, CUI B, et al. Re-search progress in the analysis of installed environment adaptability of cryogenic liquid hydrogen tanks for hy-drogen-powered aircraft[J/OL]. Acta Aeronautica et As-tronautica Sinica, (2024-04-16)[2024-05-29] (in Chi-nese). https://link.cnki.net/urlid/11.1929.V.20240115.1621.014. [13]HARTMANN C, NOLAND J K, NILSSEN R, et al. Dual use of liquid hydrogen in a next-generation PEMFC-powered regional aircraft with superconducting propulsion[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4760-4778. [14]DA SILVA F F, FERNANDES J F P, DA COSTA BRANCO P J. Barriers and challenges going from con-ventional to cryogenic superconducting propulsion for hybrid and all-electric aircrafts[J]. Energies, 2021, 14(21): 6861. [15]DEZHI N D S, DEZHINA I N. Development of the fu-ture aircraft propulsion system based on HTS electrical equipment with liquid hydrogen cooling[J]. IEEE Trans-actionson Applied Superconductivity, 2022, 32(4): 1-5. [16]宋东彬, 闫炬壮, 杨文将等. 面向电动航空的高温超导电机技术研究发展[J]. 航空学报, 2023, 44(9): 027469. SONG DONG BIN, YAN J Z, YANG W J, et al. Tech-nology development of high temperature superconduct-ing machine for electric aviation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027469(in Chinese). [17]张新榃, 于航, 彭俊毅等. 氢能源民用飞机技术路线与总体概念设计方法研究[J]. 推进技术, 2024, 45(3): 2210088. ZHANG XIN TAN, YU H, PENG J Y, et al. Technical route research and concept design of hydrogen aircraft[J]. Journal of Propulsion Technology, 2024, 45(3): 2210088 (in Chinese). [18]杨志刚, 王曼, 张志雄等. 商用飞机新能源动力发展路径分析与张[J]. 推进技术, 2024, 45(3): 2210087. YANG ZHI GANG, WANG M, ZHANG Z X, et al. Analysis and prospect of new energy power develop-ment path of commercial aircraft[J]. Journal of Propul-sion Technology, 2024, 45(3): 2210087(in Chinese). [19]陈思彤, 李微微, 王学科等. 相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016(67): 1-6. CHEN S T, LI W W, WANG X K, et al. Thermal man-agement using phase change materials for proton ex-change membrane fuel cells[J]. CIESC Journal, 2016(67): 1-6(in Chinese). [20]马富康, 苏铁熊, 赵振峰等. 对置活塞二冲程柴油机热平衡和余热可用能分析[J]. 中北大学学报(自然科学版), 2017, 38(4): 433-445. MA FU SU, SU T X, ZHAO Z F, et al. Analysis of thermal balance and waste heat exergy for opposed-piston two-stroke diesel engine[J]. Journal of north uni-versity of China (Natural science edition), 2017, 38(4): 433-445(in Chinese). [21]孙爱洲, 王鹏, 李子非等. 某柴油机排气能力热力学计算分析[J]. 现代车用动力, 2017(3) :29-33. SUN AI ZHOU, WANG P, LI Z F, et al. Thermodynam-ic calculation and analysis on exhaust energy of diesel engine [J]. Modern vehicle power, 2017(3): 29-33(in Chinese). [22]耿毫伟, 李红信, 靳晨曦等.氢燃料电池热管理系统仿真分析[J]. 汽车实用技术, 2023(20): 15-19. GENG W H, LI H X, JIN C X, et al. Simulation analy-sis of fuel cell thermal management system[J]. Automo-bile Applied Technology, 2023(20): 15-19(in Chinese). [23]袁磊, 吕婷婷, 李康等. 一种机车用氢燃料电池热管理系统[J]. 铁道机车与动车, 2024(1): 35-44. YUAN LEI, LV T T, LI K, et al. A hydrogen fuel cell thermal management system for locomotive[J]. Diesel Locomotives, 2024(1): 35-44(in Chinese). [24]王星, 孙俊, 张振东等. 燃料电池热管理系统的动态仿真及控制[J]. 电池, 2023(6): 600-604. WANG XING, SUN J, ZHANG Z D. Dynamic simula-tion and control of fuel cell thermal management sys-tem[J]. Battery Bimonthly, 2023(6): 600-604(in Chinese). [25]向乾, 张晓辉, 王正平等. 适用于无人机的小型燃料电池控制方法[J]. 航空学报, 2021,42(3): 623960. XIANG QIAN, ZHANG X H, WANG Z P, et al. Con-trol method of small fuel cells for UAVs[J].Acta Aero-nautica et Astronautica Sinica, 2021, 42(3): 623960(in Chinese). [26]寿荣中, 何慧珊. 飞行器环境控制[M], 2006: 431-432. SHOU RONG ZHONG, HE H S. Aircraft environmen-tal control[M], 2006: 431-432(in Chinese). [27]杨世铭, 陶文铨. 传热学(第四版)[M], 2012: 559. YANG SHI MING, TAO W Q. Heat Transfer(4th Ed.)[M], 2012: 559(in Chinese).
文章导航

/