多叶波箔型动压气体径向轴承流弹耦合数值分析研究

  • 吕元伟 ,
  • 赵韫铎 ,
  • 张镜洋 ,
  • 陈丽君 ,
  • 肖思维
展开
  • 1. 南京航空航天大学
    2. 南京航空航天大学航天学院
    3. 航空机电系统综合航空科技重点实验室

收稿日期: 2024-07-10

  修回日期: 2024-10-31

  网络出版日期: 2024-11-04

基金资助

国家自然科学基金;中国航空基金;江苏省自然科学基金;航空动力创新工作站基金

Numerical Investigation of Aero-elastic Coupling in Multi leaf Wave Foil Type Dynamic Pressure Gas Radial Bearings

  • DU Yan-Xia Yuan-Wei ,
  • ZHAO Yun-Duo ,
  • ZHANG Jing-Yang ,
  • CHEN Li-Jun ,
  • XIAO Si-Wei
Expand

Received date: 2024-07-10

  Revised date: 2024-10-31

  Online published: 2024-11-04

Supported by

National Natural Science Foundation of China;Aeronautical Science Foundation of China

摘要

摘 要:为揭示多叶波箔型动压气体轴承流固耦合机理,建立了该型轴承转静多楔形通道内剪切流动与箔片组合弹性变形的耦合分析方法,数值研究了转静间隙气膜非定常流场参数分布及箔片组合弹性变形响应。研究结果证实了多叶波箔型动压气体轴承存在强烈的流弹耦合效应。对于流体域,转静间隙气膜呈现出多个离散的高/低压区,高压区位于最小间隙上游通道收敛处而低压区则位于相邻箔片连接形成突扩台阶处;最小间隙上游高压区流动通道局部扩张诱导了流动分离,增加了剪切流动不稳定性;流弹耦合削弱了气膜高压区脉动而强化了低压区压力脉动。对于固体域,1号/2号弹性箔片向轴承套方向变形而4号/5号弹性箔片则向转轴方向变形,这与转静气膜高压区和低压区分布相对应;最大间隙下游转静间隙气膜低压区诱导了顶箔与其相邻搭接箔片分离;弹性箔片变形与压力脉动存在相位延迟。获得了转速、偏心率、间隙尺度和弹性箔片刚度对轴承流弹耦合性能的影响规律;转静间隙气膜压力与转速和偏心率呈正相关而与间隙尺度呈现反相关;间隙尺度的减少带来了低压区压力峰值绝对值的降低;弹性箔片杨氏模量较小时,流弹耦合更加强烈。流固耦合下,顶箔振动频率相较于压力脉动存在一定的滞后性,流体域高压区域箔片振动和气膜压力脉动幅度均大于流体域低压区域,可为机载多叶波箔型动压气体设计提供理论基础和技术指导。

本文引用格式

吕元伟 , 赵韫铎 , 张镜洋 , 陈丽君 , 肖思维 . 多叶波箔型动压气体径向轴承流弹耦合数值分析研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.30928

Abstract

To reveal the fluid structure coupling mechanism of multi blade wavy foil type dynamic pressure gas bearings, a coupling analysis method was established for the shear flow and elastic foil combination de-formation in the rotating static multi wedge channel of this type of bearing. The parameter distribution of the unsteady flow field of the rotating static gap gas film and the unsteady deformation of the elastic foil combination were numerically studied. The re-search results confirm that there is a strong fluid elastic coupling effect in multi blade wave foil type dynamic pres-sure gas bearings. When multiple wedge-shaped channels are coupled with eccentricity, different elastic foils corre-spond to multiple discrete high/low pressure zones in the gas film. The high pressure zone is located in the conver-gence area of the channel, while the low pressure zone is located at the sudden expansion step connected to adja-cent foils. The fluid elastic coupling weakens the pulsation amplitude in the high-pressure region of the gas film and strengthens the pressure pulsation amplitude in the low-pressure region. The local expansion of flow channels in the high-pressure zone induces flow separation and increases shear flow instability. The 1st and 2nd elastic foils de-form in the direction of the bearing sleeve, while the 4th and 5th elastic foils deform in the direction of the rotating shaft, which corresponds to the distribution of the high-pressure and low-pressure areas of the rotating static air film. The low-pressure zone of the static gas film induced separation between the top foil and its adjacent overlapping foil. The influence of rotational speed, eccentricity, clearance scale, and elastic foil stiffness on the fluid elastic coupling performance of bearings was obtained. The gas film pressure in the fluid domain is positively correlated with the bearing capacity, speed, and eccentricity, while negatively correlated with the clearance scale. High rotational speed and large eccentricity induce an in-crease in the peak value of the low-pressure region in the rotor static gap. Under fluid-structure coupling, there is a certain lag in the vibration frequency of the top foil compared to pressure pulsation. The amplitude of foil vibration and gas film pressure pulsation in the high-pressure region of the fluid do-main is greater than that in the low-pressure region of the fluid domain. The reduction of clearance scale enhances the bearing capacity by reducing the peak pressure in the low-pressure area.

参考文献

[1] 王云飞.气体润滑理论与气体轴承设计[M].北京:机械工业出版社, 1999. WANG Y F. Gas Lubrication Theory and Gas Bear-ing Design [M]. Beijing: China Machine Press, 1999. (in Chinese) [2] 赖天伟,马斌,郑越青. 箔片动压气体径向轴承的研究进展[C]//中国科学院兰州化学物理研究所固体润滑国家重点实验室,中国机械工程学会摩擦学分会.第十一届全国摩擦学大会论文集.2013:4. LAI T W, MA B, ZHENG Y Q. Research progress of Foil Dynamic Pressure gas Radial bearings [C]// Na-tional Key Point Laboratory of Solid Lubrication, Lan-zhou Institute of Chemical Physics, Chinese Academy of Sciences, Tribology Branch of Chinese Society of Mechanical Engineering. Proceedings of the 11th Na-tional Tribology Congress.2013:4. (in Chinese) [3] 丁水汀, 张向波, 杜发荣, 姬芬竹, 周煜. 石墨多孔介质气体轴承研究综述[J].. 航空学报, 2022,43(10):18-33. DING S T, ZHANG X B, DU F R, JI Fenzhu, ZHOU Y. A review of research on graphite porous media gas bearings. Acta Aeronautica et Astronautica Sinica, 2022, 43 (10): 18-33. (in Chinese) [4] 丁博,贾晨辉,史大炜,等.混合式气体动压轴承稳态性能研究[J].轴承,2020(10):1-6. DING B, JIA C H, SHI D W, et al. Research on Steady State Performance of Hybrid Gas Dynamic Pressure Bearing [J]. Bearing,2020(10):1-6. (in Chi-nese) [5] XU F, KIM D, YAZDI B Z. Theoretical study of top foil sagging effect on the performance of air thrust foil bearing[R]. Seoul, South Korea: ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, 2016 [6] HESHMAT H, WALOWIT J A, PINKUS O. Analysis of gas lubricated compliant thrust bearings[J]. Journal of Lubrication Technology, 1983, 105(4):638-646 [7] BONELLO P, HASSAN M. An Experimental And Theoretical Analysis Of a Foil-Air Bearing Rotor Sys-tem[J].Journal of Sound Vibration, 2018,413(1):395-420. [8] CRUMP W. Modern Developments In Lubrication Mechanics[J]. Tribology International, 1976, 9(2):90-90. [9] HESHMAT H, WALOWIT J, PINKUS O. Analysis of Gas-Lubricated Foil Journal Bearings[J]. Journal of Lubrication Science and Technology, 1983,105(4):647-659. [10] 虞烈.弹性箔片轴承的气弹润滑解[J].西安交通大学学报,2004,47(3):327-330. YU L. Aeroelastic lubrication of Elastic Foil Bearing [J]. Journal of Xi 'an Jiaotong Universi-ty,2004,47(3):327-330. (in Chinese) [11] IORDANOFF I. Analysis of an aerodynamic compli-ant foil thrust bearing: Method for a Rapid Design[J]. Journal of Tribology, 1999,121(4): 816-822. [12] ZHANG J Y, WANG R X, LYU Y W et al. Thermal effect induced by viscous dissipation on characteristics of aerodynamic foil journal bearing with aero-thermo-elastic coupling[J]. Thermal Science and Engineering Progress.2024,50(1)102511. [13] ?YWICA G, BAGI?SKI P. Investigation of Gas Foil Bearings with an Adaptive and Nonlinear Structuree[J]. Acta Mechanica et Automatica,2019(10):5-10 [14] FATU A, ARGHIR M.Numerical Analysis of the Im-pact of Manufacturing Errors on the Structural Stiff-ness of Foil Bearings.[J].Journal of Engineering for Gas Turbines & Power,2018,140(4): 1-9. [15] Li C L, Du J J, Zhu J J,et al. Effects of structural pa-rameters on the load carrying capacity of the multi-leaf gas foil journal bearing based on contact mechan-ics[J].Tribology International,2018,131(1):318-331. [16] 耿海鹏,戚社苗,虞烈. 有大预紧效应的多叶径向箔片轴承的分析[J].航空动力学报,2006,21(3):318-331. GENG H P, QI S M, YU L. Analysis of multi-blade radial foil bearing with large preload effect [J]. Journal of Aerospace Power,2006,21(3):318-331. (in Chinese) [17] 黄钟文,郭雨,罗欣洋,等.多叶式径向动压气体箔片轴承预紧力仿真[J].节能技术,2024,42(1):58-63 HUANG Z W, GUO Y, LUO X Y, et al. Simulation of preload of multi-vane radial Dynamic pressure gas foil Bearing [J]. Energy Saving Technology,2024,42(1):58-63(in Chinese) [18] 宋笛. 多箔片气体动压径向轴承特性分析和实验台设计[D]. 北京:北京工业大学,2021. SONG D. Characteristic Analysis and Experimental bench design of multi-foil gas dynamic pressure radial Bearing [D]. Beijing: Beijing University of Technolo-gy,2021. (in Chinese) [19] 徐奔,张镜洋,陈卫东,等.基于接触摩擦的多叶波箔型动压气体轴承静特性研究[J].推进技术,2022,43(11): 322-331. XU B, ZHANG J Y CHEN W D, et al. Research on Static Characteristics of multi-blade Wave Foil Dynam-ic Pressure Gas Bearing Based on Contact Friction [J]. Journal of Propulsion Technology,202,43(11): 322-331. (in Chinese) [20] YANG B, FENG S, TIAN J, et al. Research on the static performance of multi-cantilever foil bearing with the fully coupled elastic hydrodynamic solution[C]// In-ternational Conference on Mechatronics and Automa-tion, Tianjin, China: IEEE, 2019: 2369-2374. [21] FATU A, ARGHIR M. Numerical analysis of the im-pact of manufacturing errors on the structural stiffness of foil bearings[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(4):1235-1250. [22] RUSCITTO D, CORMICK J, GRAY S, et al. Hydro-dynamic Air lubricated Compliant Surface Bearing for An Automotive Gas Turbine Engine Journal Bearing performance: NASA-CR-135368[R]. New York, NASA Technical Report, 1978. [23] 肖云峰,陈在斌,宋笛,等.轴径转速对多箔片气体动压径向轴承静特性的影响[J].内燃机与配件,2022,53(09):57-59. (in Chinese) XIAO Y F, CHEN Z B, SONG D, et al. Influence of Shaft Diameter Speed on Static Characteristics of Mul-ti-foil Gas Dynamic Pressure Radial Bearing [J]. Inter-nal Combustion Engine and Accesso-ries,2022,53(09):57-59. [24] 刘恒,贾晨辉,刘书明,等.多叶箔片气体动压轴承静态特性研究[J].轴承,2023,22(10):7-15. LIU H, JIA C H, LIU S M, et al. Research on Static Characteristics of Multi-leaf Foil Gas Dynamic Pres-sure Bearing [J]. Bearing,2023,22(10):7-15. (in Chi-nese) [25] 吕昕.多叶式波箔气体动压轴承静特性研究[J].润滑与密封,2022,47(04):146-153. LYU X. Study on Static Characteristics of multi-blade wave Foil Gas Dynamic Pressure Bearing [J]. Lubrica-tion & Sealing,2022,47(04):146-153. (in Chinese)
文章导航

/