传感器失效下的魔毯着舰气流角重构算法

  • 吕晓晨 ,
  • 史静平 ,
  • 吕永玺 ,
  • 李耕农
展开
  • 1. 西北工业大学自动化学院
    2. 西北工业大学

收稿日期: 2024-09-06

  修回日期: 2024-10-25

  网络出版日期: 2024-10-29

基金资助

国家自然科学基金;国家自然科学基金;航空科学基金;陕西省自然科学基金

MAGIC CARPET landing flow angle reconstruction algorithm under sensor failure

  • YANG Qing-Zhen Xiao-Chen ,
  • SHI Jing-Ping ,
  • SHI Jing-Ping Yong-Xi ,
  • LI Geng-Nong
Expand

Received date: 2024-09-06

  Revised date: 2024-10-25

  Online published: 2024-10-29

摘要

魔毯着舰飞控系统依赖稳定准确的气流角信号,然而气流角传感器工作环境恶劣,精度较低且容易损坏。此时可利用其他传感器信号对所需气流角信号进行重构,然而,现有气流角重构算法仅可对惯性气流角进行构造,且多数算法忽略了惯性传感器的漂移误差。魔毯着舰过程中舰载机处于低速大迎角状态,舰尾流扰动会导致惯性迎角估计结果与气流迎角存在较大偏差,不利于控制系统的增稳与航迹修正,针对这一问题,提出了一种传感器失效下的魔毯着舰气流角重构算法,该算法无需气流角传感器即可对舰尾流以及气流迎角与侧滑角进行估计,同时考虑了惯性传感器漂移误差。将气流角重构算法加入所设计的魔毯着舰控制系统回路之中,令重构气流角信号参与着舰控制律解算进行数字与半物理仿真验证,结果表明:算法可以对舰尾流以及惯性传感器漂移误差进行估计,得到的重构气流角信号可以反映真实气流角信息,且光滑稳定,不随时间发散,重构气流角信号可以参与魔毯着舰控制律解算,使舰载机保持稳定的气流角,快速对航迹进行准确修正。

本文引用格式

吕晓晨 , 史静平 , 吕永玺 , 李耕农 . 传感器失效下的魔毯着舰气流角重构算法[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31159

Abstract

The MAGIC CARPET carrier landing control system relies on stable and accurate flow angle signals. However, the flow angle sensors operate in harsh environments, resulting in low accuracy and susceptibility to damage. In such cases, other sensor signals can be used to reconstruct the required flow angle signal. However, existing flow angle reconstruction algorithms can only construct the inertial flow angle, and most algorithms overlook the drift errors of inertial sensors. During the Magic Carpet carrier landing process, the carrier-based aircraft operates at low speeds and high angles of attack, and disturbances from the ship's wake flow can cause significant deviations between the estimated inertial angle of attack and the true flow angle, hindering the control system's stability and trajectory cor-rection. To address this issue, a Magic Carpet carrier landing flow angle reconstruction algorithm is proposed for use in the event of sensor failure. This algorithm estimates the ship's wake flow, the angle of attack, and the sideslip angle without the need for a flow angle sensor, while also considering inertial sensor drift errors. The flow angle reconstruction algorithm is integrated into the designed Magic Carpet carrier landing control system loop, and the reconstructed flow angle signal is used in the landing control law calculation for digital and hardware-in-the-loop simulation verification. The results demonstrate that the algorithm can estimate the ship's wake flow and inertial sensor drift errors, producing a reconstructed flow angle signal that accurately reflects the true flow angle infor-mation. The signal is smooth and stable, without diverging over time, and can be used in the Magic Carpet carrier landing control law calculation to maintain a stable flow angle, enabling rapid and precise trajectory correction for the carrier-based aircraft.

参考文献

[1] 孙笑云.舰载飞机精确着舰飞行控制技术研究[D]. 南京: 南京航空航天大学, 2021: 1-4.
[2]史静平, 章卫国, 穆旭.基于特征结构配置的非线性控制器在直接力控制中的应用[J].弹箭与制导学报, 2006, 2006(3):17-19
[3]DENHAM J W.Project MAGIC CARPET:“adcanced controls and displays for precision carrier landings”[C]//54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
[4]吴文海, 汪节, 高丽, 等.着舰技术分析[J].系统工程与电子技术, 2018, 40(9):2079-2091
[5] GREEN B E, FINDLA Y D.CFD analysis of the F/A-18E super hornet during aircraft-carrier landing high-lift aerodynamic conditions[C]//54th AIAA Aerospace Sci-ences Meeting. Reston: AIAA, 2016.
[6]RUDOWSKY T, HYNES M, LUTER M, et al.Review of the carrier approach criteria for carrier-based aircraft-phase I: Final report[R]. Virginia : Defense Technical In-formation Center, 2002.
[7]GRALOW L J.Benefits of automation in carrier based fixed wing aircraft launch and recovery[R]. Redondo Beach: Naval Air Test Center, 2013.
[8]SHAFER D M, PAUL R C, KING M J, et al.Aircraft carrier landing demonstration using manual control by a ship-based observer[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
[9]张志冰, 张秀林, 王家兴, 等.一种基于多操纵面控制分配的人工着舰精确控制方法[J].航空学报, 2021, 42(8):142-157
[10]史静平.直接力纵向解耦控制方法研究与实时仿真系统[D]. 西安: 西北工业大学, 2007: 26-32.
[11]BEA.Final report on the accident on 1st june 2009 to the airbus a330-203 registered f-gzcp operated by air france flight af 447 rio de janeiro–paris[R]. Paris:, French Civil Aviation Safety Investigation Authority 2012.
[12]CARPENTER F L.Summary of facts - B2 accident on 23 Feb. 2008[R]. Norway: Accident Invest board, 2008.
[13]RHUDY M, LARRABEE T, CHAO H Y, et al.UAV Attitude, Heading, and Wind Estimation Using GPS/INS and an Air Data System[C]//AIAA Guidance, Navigation, and Control Conference. Boston: AIAA, 2013: 5201.
[14]Cho A, Kang Y, Park B, et al.Airflow angle and wind estimation using GPS/INS navigation data and air-speed[C]//2013 13th International Conference on Control, Automation and Systems (ICCAS 2013). IEEE, 2013: 1321-1324.
[15]BEARD R W, MCLAIN T W.Small Unmanned Aircraft: Theory and Practice[M].Princeton: Princeton University Press, 2012: 121-123.
[16]BERGER T, TISCHLER M, HAGEROTT S G, et al.Longitudinal control law design and handling qualities optimization for a business jet flight control sys-tem[C]//AIAA Atmospheric Flight Mechanics Confer-ence. Boston: AIAA, 2012: 4503.
[17]BERGER T, TISCHLER M, HAGEROTT S G, et al.Lateral/directional control law design and handling quali-ties optimization for a business jet flight control sys-tem[C]//AIAA Atmospheric Flight Mechanics Confer-ence. Boston: AIAA, 2013: 4506.
[18]LU P, VAN KAMPEN E, DE VISSER C, et al.Air Data Sensor Fault Detection and Diagnosis in the Presence of Atmospheric Turbulence: Theory and Experimental Vali-dation With Real Flight Data[J].IEEE Transactions on Control Systems Technology, 2021, 29(5):2255-2263
[19]杨宝均, 宋招枘.传感器失效下的迎角重构[J].航空科学技术, 2018, 29(08):33-40
[20]王军.飞控系统传感器数据融合技术研究[D]. 西安: 西北工业大学, 2007: 36-56.
[21]MORELLI E A.Real-time aerodynamic parameter esti-mation without airflow angle measurements[J].Journal of Aircraft, 2012, 49(4):1064-1074
[22]RAMPRASADH C, ARYA H.Multistage-fusion algo-rithm for estimation of aerodynamic angles in mini aerial vehicle[J].Journal of Aircraft, 2012, 49(1):93-100
[23]TIAN P Z, CHAO H Y, FLANAGAN H P, et al.Design and Evaluation of UAV Flow Angle Estimation Filters[J].IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(1):371-383
[24]朱奇.基于直接力的着舰技术研究[D]. 西安: 西北工业大学, 2022: 57-88.
[25]彭兢, 金长江.航空母舰尾流数值仿真研究[J].北京航空航天大学学报, 2000, 26(3):340-343
[26]甄子洋, 王新华, 江驹, 等.舰载机自动着舰引导与控制研究进展[J].航空学报, 2017, 38(02):127-148
文章导航

/