氢燃料电池混合动力客机关键参数敏感性研究

  • 范周伟 ,
  • 孔垂欢 ,
  • 刘明 ,
  • 谭兆光
展开
  • 1. 中国商用飞机有限责任公司 上海飞机设计研究院
    2. 上海飞机设计研究院
    3. 中国商用飞机有限责任公司上海飞机设计研究院

收稿日期: 2024-08-16

  修回日期: 2024-10-18

  网络出版日期: 2024-10-23

基金资助

上海市“超级博士后”

Sensitivity analysis on key parameters of a hybrid hydrogen fuel cell commercial aircraft

  • FAN Zhou-Wei ,
  • KONG Chui-Huan ,
  • LIU Ming ,
  • TAN Zhao-Guang
Expand

Received date: 2024-08-16

  Revised date: 2024-10-18

  Online published: 2024-10-23

摘要

氢燃料电池混合动力客机是未来降低航空业碳排放的可行技术路线之一。然而目前对于不同氢燃料电池混动技术对飞机整体特性影响的机理分析和定量趋势研究较少。针对该问题,建立氢燃料电池混合动力客机关键参数敏感性分析方法,定量研究关键技术参数变化对飞机整体特性的影响和作用趋势。同时根据当前至未来十年内,各阶段氢能技术发展所能达到的不同技术水平,匹配不同阶段的最佳动力分配策略。针对窄体干线客机案例,开展关键参数敏感性分析。敏感性分析结果表明,氢燃料电池功率密度对飞机的最大起飞重量和使用空重影响最大,而巡航时的氢动力配比对飞机的碳排放量、以及燃料和碳税成本影响最大。在不同技术水平下,提高巡航时的氢燃料电池提供的推力占比整体而言可以降低飞机的最大起飞重量以及燃料和碳税成本,但起飞氢动力占比不能过大。在未来混动技术预期发展过程中,巡航氢燃料电池提供的推力占比取0.4,起飞氢燃料电池提供的推力占比取0.15,飞机可获得最轻的最大起飞重量和最低的燃料和碳税成本。对比传统飞机,氢燃料电池混合动力飞机在未来十年将降低燃料和碳税成本达15%~26%。

本文引用格式

范周伟 , 孔垂欢 , 刘明 , 谭兆光 . 氢燃料电池混合动力客机关键参数敏感性研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31066

Abstract

Hybrid hydrogen fuel cell aircraft is one of the feasible technological routes to reduce carbon emissions in the aviation industry. However, there is a lack of mechanism analysis and quantitative trend research on the impact of different hybrid hydrogen fuel cell technologies on the overall characteristics of aircraft. A sensitivity analysis method for key parameters of hybrid hydrogen fuel cell commercial aircraft is established to study the mechanism and trend of key technical parameters on the overall characteristics of the aircraft. Moreover, the best power allocation strategy is matched according to different technical levels. For the case of a narrow-body aircraft, the results of the sensitivity analysis show that the power density of the hydrogen fuel cell has the greatest impact on the maximum takeoff weight and operating empty weight of the aircraft, while the thrust proportion by hydrogen fuel cell dur-ing cruising has the greatest impact on the carbon emissions of the aircraft, as well as the fuel and carbon tax costs. Under different technical levels, improving the thrust proportion by hydrogen fuel cell during cruising can generally reduce the maximum takeoff weight and fuel and carbon tax costs of the aircraft, but the takeoff thrust proportion by hydrogen fuel cell should not be too large. When the cruise thrust proportion by hydrogen fuel cell is 0.4 and the takeoff thrust proportion by hydrogen fuel cell is 0.15, the aircraft can obtain the lightest maximum takeoff weight and the lowest fuel and carbon tax costs under most hybrid technology development conditions. Compared with traditional aircraft, the hybrid hydrogen fuel cell aircraft will reduce fuel and carbon tax costs by 15%~26% in the next decade.

参考文献

[1]GRAVER B, RUTHERFORD D, ZHENG S.CO2 emissions from commercial aviation: 2013, 2018, and 2019[R]. Washington, D.C.: International Council on Clean Transportation, 2020.
[2]黄俊, 杨凤田.新能源电动飞机发展与挑战[J].航空学报, 2016, 37(1):57-68
HUANG J, YANG F T.Development and challenges of electric aircraft with new energies[J].Acta Aeronautics et Astronautics Sinica, 2016, 37(1):57-68
[3]雷涛, 闵志豪, 付红杰, 等.燃料电池无人机混合电源动态平衡能量管理策略[J].航空学报, 2020, 41(12):293-307
LEI T, MIN Z H, FU H J, et al.Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle[J].Acta Aeronautics et Astronautics Sinica, 2020, 41(12):293-307
[4]BRADLEY M K, DRONEY C K.Subsonic ultra green aircraft research phase II: N+4 advanced concept development: NASA/CR-2012-217556[R]. Hampton, Virginia: National Aeronautics and Space Administration, 2012.
[5]STüRKEN J, MEINBERG L, BAHM S, et al.Concept for a hydrogen-powered aircraft for 150 passengers with EIS 2035[C]//Deutscher Luft-und Raumfahrtkon-gress, 2021.
[6]ADLER E J, MARTINS J R R A.Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts[J]. Progress in Aerospace Sciences, 2023, 141: 100922-100952.[J].Progress in Aerospace Sciences, 2023, 141(1):100922-100952
[7]纪宇晗, 吴佳茜, 曾凡苍.氢燃料电池支线飞机关键技术与发展展望[J].航空科学技术, 2024, 35(1):15-24
JI Y H, WU J X, ZENG F C.Key Technologies and development outlook of hydrogen fuel cell regional aircraft[J].Aeronautical Science & Technology, 2024, 35(1):15-24
[8]纪宇晗, 曾凡苍, 王翔宇, 等.氢燃料电池支线飞机概念设计与性能分析[J]. 航空学报 (网络优先出版).[J].航空学报, 2024, 1(1):1-16
JI Y H, ZENG F C, WANG X Y, et al.Concept design and performance analysis of hydrogen fuel cell region-al aircraft[J]. Acta Aeronautica et Astronautica Sinica (Advance online publication) (in Chinese).[J].Acta Aeronautics et Astronautics Sinica, 2024, 1(1):1-16
[9]HOWE D.Aircraft conceptual design synthesis[M]. London: Professional Engineering Publishing Limited, 2000.
[10]GUDMUNDSSON S.General aviation aircraft design: Applied methods and procedures[M]. Waltham, MA: Butterworth-Heinemann, 2022.
[11]ROSKAM J.Airplane design: part I: Preliminary sizing of airplanes[M]. Ottawa, Kansas: Roskam Aviation and Engineering Corporation, 1985.
[12]TORENBEEK E.Advanced aircraft design: conceptual design, analysis and optimization of subsonic civil air-planes[M]. Chichester: John Wiley and Sons, Ltd., 2013.
[13]LOFTIN L K.Subsonic aircraft: Evolution and the matching of size to performance: NASA-RP-1060[R]. Hampton, Virginia: National Aeronautics and Space Administration, 1980.
[14]VERSTRAETE D, HENDRICK P, PILIDIS P, et al.Hydrogen fuel tanks for subsonic transport air-craft[J].International Journal of Hydrogen Energy, 2010, 35(20):11085-11098
[15]张帅.客机总体综合分析与优化及其在技术评估中的应用[D]. 南京: 南京航空航天大学, 2012.
ZHANG S.Integrated analysis and optimization in conceptual design of airliners with applications to technology assessment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
[16]SFORZA P M.Commercial airplane design principles[M]. Oxford, UK: Butterworth-Heinemann, 2014.
[17]MARKSEL M, PRAPOTNIK BRDNIK A.Maximum Take-off mass estimation of a 19-seat fuel cell air-craft consuming liquid hydrogen[J].Sustainability, 2022, 14(14):8392-8406
[18]LENSSEN R H.Series hybrid electric aircraft: comparing the well-to-propeller efficiency with a conventional propeller aircraft[D]. Delft: Delft University of Tech-nology, 2016.
[19]BIJEWITZ J R.Conceptual sizing methods for pro-pulsive fuselage aircraft concepts[D]. München: Tech-nische Universit?t München, 2019.
[20]中国民用航空局.中国民用航空规章第25部:运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中国民用航空局, 2016.
CIVIL AVIATION ADMINISTRATION OF CHINA.China civil aviation regulation part 25: Airworthiness standards of transport category airplanes: CCAR-25-R4[S]. Beijing: Civil Aviation Administration of China, 2016 (in Chinese).
[21]刘虎, 罗明强, 孙康文, 等.飞机总体设计[M]. 北京: 北京航空航天大学出版社, 2019.
LU H, LUO M Q, SUN K W, et al.Aircraft conceptual design[M]. Beijing: Beihang University Press, 2019 (in Chinese).
[22]INTERNATIONAL CIVIL AVIATION ORGANIZATION.ICAO carbon emissions calculator methodology[R]. 2018.
[23]LEE M, LI L K B, SONG W.Analysis of direct operating cost of wide-body passenger aircraft: A parametric study based on Hong Kong[J].Chinese Journal of Aeronautics, 2019, 32(5):1222-1243
[24]SCOTT M.Analysing the costs of hydrogen aircraft: Report 24135101[R]. London: Steer, 2023.
[25]达兴亚, 范召林, 熊能, 等.分布式边界层吸入推进系统的建模与分析[J].航空学报, 2018, 39(7):113-121
DA Y, FAN Z L, XIONG N, et al.Modeling and analysis of distributed boundary layer ingesting propulsion system[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(7):113-121
[26]YILDIRIM A, GRAY J S, MADER C A, et al.Bounda-ry-layer ingestion benefit for the STARC-ABL concept[J].Journal of Aircraft, 2022, 59(4):896-911
[27]FLYZERO.Fuel cells roadmap report: FZOPPN-COM-0033[R]. London: Aerospace Technology Institute, 2022.
[28]MARTINS J R R A, LAMBE A B. Multidisciplinary design optimization: a survey of architectures[J].AIAA Journal, 2013, 51(9):2049-2075
[29]BURTON S A, KAO J Y, WHITE T L, et al.Air-racer design exploration using Latin Hypercube and genetic algorithm methods [C]//AIAA Scitech 2020 Forum. Orlando, Florida: American Institute of Aeronautics and Astronautics, 2020.
[30]范周伟, 余雄庆, 王朝, 等.基于深度神经网络的客机总体设计参数敏感性分析[J].航空学报, 2021, 42(4):524353-1-524353-10
FAN Z W, YU X Q, WANG C, et al.Sensitivity analysis of key design parameters of commercial aircraft using deep neural network[J].Acta Aeronauticaet Astronautica Sinica, 2021, 42(4):524353-1-524353-10
[31]DAI Y, WANG Y, XU X, et al.An improved method for initial sizing of airbreathing hypersonic aircraft[J].Aerospace, 2023, 10(2):199-218
文章导航

/