专栏

高超声速进气道预喷注技术研究进展与关键问题

  • 罗飞腾 ,
  • 渠镇铭 ,
  • 李海涛 ,
  • 李新珂 ,
  • 姚达豪 ,
  • 陈文娟 ,
  • 龙垚松 ,
  • 韦宝禧 ,
  • 满延进 ,
  • 杨甫江 ,
  • 程强 ,
  • 孔武斌
展开
  • 1.华中科技大学 航空航天学院,武汉 430074
    2.电能高密度转换全国重点实验室,武汉 430074
    3.冲压发动机技术全国重点实验室,北京 100074
    4.北京动力机械研究所,北京 100074
    5.华中科技大学 能源与动力工程学院,武汉 430074
    6.华中科技大学 电气与电子工程学院,武汉 430074

收稿日期: 2024-09-12

  修回日期: 2024-09-30

  录用日期: 2024-10-11

  网络出版日期: 2024-10-15

基金资助

冲压发动机技术全国重点实验室基金(WDZC6142703202202)

Research progress and key issues of inlet pre-injection at hypersonic condition

  • Feiteng LUO ,
  • Zhenming QU ,
  • Haitao LI ,
  • Xinke LI ,
  • Dahao YAO ,
  • Wenjuan CHEN ,
  • Yaosong LONG ,
  • Baoxi WEI ,
  • Yanjin MAN ,
  • Fujiang YANG ,
  • Qiang CHENG ,
  • Wubin KONG
Expand
  • 1.School of Aerospace Engineering,Huazhong University of Science and Technology,Wuhan 430074,China
    2.National Key Laboratory of High Density Electrical Energy Conversion,Wuhan 430074,China
    3.National Key Laboratory of Ramjet Technology,Beijing 100074,China
    4.Beijing Power Machinery Institute,Beijing 100074,China
    5.School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan 430074,China
    6.School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

Received date: 2024-09-12

  Revised date: 2024-09-30

  Accepted date: 2024-10-11

  Online published: 2024-10-15

Supported by

National Key Laboratory of Ramjet Technology Foundation(WDZC6142703202202)

摘要

吸气式高超声速推进技术是高超声速飞行器发展的核心支撑,随着高超声速飞行马赫数的不断提升,吸气式高超声速发动机内流面临高焓高速、驻留时间极短等极端条件,给内流燃烧组织、性能提升、速域边界拓展等带来极大困难与挑战。进气道预喷注作为一种新型主动式燃料喷注与混合增强技术被引入高超声速推进系统,为更高马赫数发动机内流流动与燃烧组织、性能匹配与调控、一体化设计优化提供了新的潜在可控因素,已经得到领域的关注与研究重视。基于高马赫数高超声速推进背景需求,对高超声速进气道预喷注技术研究进展与关键问题进行了较为系统的综述分析。首先,阐述了高超声速进气道预喷注概念,分析其中基本气动热力工作过程及耦合作用影响;其次,对高马赫数发动机研究概况进行简要介绍,指出其中重点发展方向及其对进气道预喷注的共性需求;然后,梳理了超声速来流喷注与混合的基本研究认识,指出目前仍缺乏高超声速复杂来流条件下喷注混合的充分认识;最后,系统总结了国内外在高超声速进气道预喷注方面的研究进展,对高超声速进气道预喷注需要解决的主要关键问题进行论述分析,提出了未来研究展望与建议,以促进进气道预喷注技术在高马赫数高超声速推进系统的应用研究与发展。

本文引用格式

罗飞腾 , 渠镇铭 , 李海涛 , 李新珂 , 姚达豪 , 陈文娟 , 龙垚松 , 韦宝禧 , 满延进 , 杨甫江 , 程强 , 孔武斌 . 高超声速进气道预喷注技术研究进展与关键问题[J]. 航空学报, 2025 , 46(8) : 631189 -631189 . DOI: 10.7527/S1000-6893.2024.31189

Abstract

Air-breathing hypersonic propulsion technology is a core foundation for the of hypersonic vehicles development. As the flight Mach number of hypersonic vehicles continues to increase, the internal flow of air-breathing hypersonic engine faces extreme conditions such as high enthalpy, high velocity, and extremely short residence times. These conditions present significant challenges in combustion organization, performance improvement, and upper flight Mach number extension. Inlet pre-injection, as a novel active fuel injection and mixing enhancement technology, has been proposed and introduced into hypersonic propulsion systems. It provides a new potential controllable factor for the internal flow and combustion organization, performance matching and control, and integrated design optimization of higher Mach number engines, and has garnered attention and research interests in the field. Considering the needs for high Mach number hypersonic propulsion, this paper systematically reviews and analyzes the research progress and key issues of hypersonic inlet pre-injection technology. First, the concept of hypersonic inlet pre-injection is introduced, and the basic aerodynamic and thermodynamic processes and coupling effects are analyzed. Second, a brief overview of the research status of high Mach number engines is provided, highlighting the key development directions and their common requirements for inlet pre-injection. Then, the fundamental understanding of supersonic inflow injection and mixing is summarized, pointing out the current lack of comprehensive understanding of injection and mixing under complex hypersonic inflow conditions. Finally, the research progress on hypersonic inlet pre-injection at home and abroad is systematically summarized, with a discussion and analysis of the main key issues that need to be addressed. The research prospects and suggestions are proposed to promote the application and development of inlet pre-injection technology in high Mach number hypersonic propulsion systems.

参考文献

1 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012.
  CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012 (in Chinese).
2 纪鉴恒, 蔡尊, 王泰宇, 等. 宽速域超燃冲压发动机流动燃烧过程研究进展[J]. 航空学报202445(3): 028696.
  JI J H, CAI Z, WANG T Y, et al. Flow and combustion process for wide speed range scramjet: Review[J]. Acta Aeronautica et Astronautica Sinica202445(3): 028696 (in Chinese).
3 刘小勇, 王明福, 刘建文, 等. 超燃冲压发动机研究回顾与展望[J]. 航空学报202445(5): 529878.
  LIU X Y, WANG M F, LIU J W, et al. Review and prospect of research on scramjet[J]. Acta Aeronautica et Astronautica Sinica202445(5): 529878 (in Chinese).
4 SISLIAN J P, ATAMANCHUK T M. Aerodynamic and propulsive performance of hypersonic detonation wave ramjets[C]?∥Proceedings of the 9th International Symposium on Air Breathing Engines. Reston: AIAA, 1989.
5 URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics201850: 593-627.
6 CURRAN E T, HEISER W H, PRATT D T. Fluid phenomena in scramjet combustion systems?[J]. Annual Review of Fluid Mechanics199628: 323-360.
7 FERRI A. Mixing-controlled supersonic combustion?[J]. Annual Review of Fluid Mechanics19735: 301-338.
8 GUTMARK E J, SCHADOW K C, YU K H. Mixing enhancement in supersonic free shear flows[J]. Annual Review of Fluid Mechanics199527: 375-417.
9 VINOGRADOV V A, SHIKHMAN Y M, SEGAL C. A review of fuel pre-injection in supersonic, chemically reacting flows[J]. Applied Mechanics Reviews200760(4): 139-148.
10 BRIESCHENK S, KLEINE H, O’BYRNE S. Laser ignition of hypersonic air-hydrogen flow[J]. Shock Waves201323(5): 439-452.
11 LV Z, XU J L, SONG G T, et al. Review on the aerodynamic issues of the exhaust system for scramjet and turbine based combined cycle engine[J]. Progress in Aerospace Sciences2023143: 100956.
12 JIANG Z L, ZHANG Z J, LIU Y F, et al. Criteria for hypersonic airbreathing propulsion and its experimental verification[J]. Chinese Journal of Aeronautics202134(3): 94-104.
13 VOLAND R T, HUEBNER L D, MCCLINTON C R. X-43A Hypersonic vehicle technology development?[J]. Acta Astronautica200659(1-5): 181-191.
14 POWELL O A, EDWARDS J T, NORRIS R B, et al. Development of hydrocarbon-fueled scramjet engines: the hypersonic technology (HyTech) program?[J]. Journal of Propulsion and Power200117(6): 1170-1176.
15 MARSHALL L, BAHM C, CORPENING G, et al. Overview with results and lessons learned of the X-43A Mach 10 flight?[C]?∥AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
16 BAHM C, BAUMANN E, MARTIN J, et al. The X-43A hyper-X Mach 7 flight 2 guidance, navigation, and control overview and flight test results?[C]?∥AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
17 HASS N, SMART M, PAULL A. Flight data analysis of the HYSHOT 2[C]∥AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
18 SMART M K, HASS N E, PAULL A. Flight data analysis of the HyShot 2 scramjet flight experiment[J]. AIAA Journal200644(10): 2366-2375.
19 PAULL A, FROST M, ALESI H. HyShot-T4 supersonic combustion experiments: NAG-1-2113[R].Washington, D.C.: NASA, 1995
20 GARDNER A D, HANNEMANN K, PAULL A, et al. Ground testing of the HyShot supersonic combustion flight experiment in HEG?[M]?∥Shock Waves. Berlin, Heidelberg: Springer, 2005: 329-334.
21 LAURENCE S J, KARL S, SCHRAMM J M, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Journal of Fluid Mechanics2013722: 85-120.
22 HASS N, CABELL K, STORCH A, et al. HIFiRE direct-connect rig (HDCR) phase I scramjet test results from the NASA langley arc-heated scramjet test facility[C]∥17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011.
23 邓帆, 尘军, 谢峰, 等. 基于超燃冲压发动机的HIFiRE项目飞行试验研究进展[J]. 航空动力学报201833(3): 683-695.
  DENG F, CHEN J, XIE F, et al. Research progress on flight tests of HIFiRE project based on scramjet[J]. Journal of Aerospace Power201833(3): 683-695 (in Chinese).
24 BOWCUTT K, PAULL A, DOLVIN D, et al. HIFiRE: An international collaboration to advance the science and technology of hypersonic flight[C]?∥Proceedings of the 28th International Congress of the Aeronautical Sciences, Netherlands: ICAS Secretariat, 2012.
25 PEZZELLA G, MARINI M, CICALA M, et al. Aerodynamic characterization of HEXAFLY scramjet propelled hypersonic vehicle[C]∥32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014.
26 SELEZNEV R K. History of scramjet propulsion development?[J]. Journal of Physics: Conference Series20181009: 012028.
27 ODAM J, PAULL A. In new results in numerical and experimental fluid mechanics[M]. Berlin: Springer, 2007.
28 MCGUIRE J R, BOYCE R R, MUDFORD N R. Radical-farm ignition processes in two-dimensional supersonic combustion?[J]. Journal of Propulsion and Power200824(6): 1248-1257.
29 LORRAIN P, BRIESCHENK S, CAPRA B, et al. A detailed investigation of nominally 2-D radical-farming scramjet combustion[C]∥18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012.
30 SISLIAN J P, ATAMANCHUK T T. Aerodynamic and propulsive performance of hypersonic detonation wave ramjets[C]?∥Proceedings in the 9th International Symposium on Air Breathing Engines. Reston: AIAA, 1989.
31 BOYCE R, MCINTYRE T. Combustion scaling laws and inlet starting for Mach 8 inlet-injection radical farming scramjets: ADA528340[R]. Brisbane: University of Queensland, 2010.
32 RAZZAQI S A, SILVESTER T, SMART M K, et al. The HIFiRE 7 flight experiment[C]?∥22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2018.
33 薛瑞, 杜鹏, 丁国誉, 等. 斜爆震燃烧与斜爆震发动机研究进展[J]. 应用力学学报202441(2): 241-259.
  XUE R, DU P, DING G Y, et al. Research status of oblique detonation combustion and oblique detonation engine[J]. Chinese Journal of Applied Mechanics202441(2): 241-259 (in Chinese).
34 TURNER J. An experimental investigation of inlet fuel injection in a three-dimensional scramjet engine?[D]. Queensland: The University of Queensland, 2010.
35 TECHER A, MOULE Y, LEHNASCH G, et al. Mixing of fuel jet in supersonic crossflow: Estimation of subgrid-scale scalar fluctuations?[J]. AIAA Journal201856(2): 465-481.
36 SANTIAGO J G, DUTTON J C. Velocity measurements of a jet injected into a supersonic crossflow?[J]. Journal of Propulsion and Power199713(2): 264-273.
37 MAHESH K. The interaction of jets with crossflow[J]. Annual Review of Fluid Mechanics201345: 379-407.
38 EVERETT D E, WOODMANSEE M A, DUTTON J C, et al. Wall pressure measurements for a sonic jet injected transversely into a supersonic crossflow[J]. Journal of Propulsion and Power199814(6): 861-868.
39 VANLERBERGHE W M, SANTIAGO J G, DUTTON J C, et al. Mixing of a sonic transverse jet injected into a supersonic flow[J]. AIAA Journal200038: 470-479.
40 KAWAI S, LELE S K. Large-eddy simulation of jet mixing in supersonic crossflows?[J]. AIAA Journal201048(9): 2063-2083.
41 KAWAI S, LELE S K. Mechanisms of jet mixing in a supersonic crossflow: A study using large-eddy simulation[C]?∥44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2008.
42 RANA Z A, THORNBER B, DRIKAKIS D. Transverse jet injection into a supersonic turbulent cross-flow[J]. Physics of Fluids201123(4): 046103.
43 RANA Z A, DRIKAKIS D, THORNBER B J. Investigation of sonic jet mixing in a stream of supersonic cross-flow using large eddy simulation[C]?∥Proceedings of the 27th International Congress of the Aeronautical Sciences. Nice: ICAS, 2010.
44 RANA Z A, THORNBER B, DRIKAKIS D. On the importance of generating accurate turbulent boundary condition for unsteady simulations[J]. Journal of Turbulence201112: N35.
45 GéNIN F, MENON S. Dynamics of sonic jet injection into supersonic crossflow?[J]. Journal of Turbulence201011(4): 1-30.
46 SCHETZ J A, BILLIG F S. Penetration of gaseous jets injected into a supersonic stream?[J]. Journal of Spacecraft and Rockets19663(11): 1658-1665.
47 SEGAL C. The scramjet engine: Processes and characteristics?[D]. Cambridge: Cambridge University Press, 2009.
48 BLLLIG F S, ORTH R C, LASKY M. A unified analysis of gaseous jet penetration[J]. AIAA Journal19719(6): 1048-1058.
49 HERSCH M, POVINELLI F P, POVINELLI L A. A schlieren technique for measuring jet penetration into a supersonic stream?[J]. Journal of Spacecraft and Rockets19707(6): 755-756.
50 ROGERS R C. Mixing of hydrogen injected from multiple injectors normal to a supersonic airstream?[M]. Washington, D.C.: National Aeronautics and Space Administration, 1971.
51 MCCLINTON C R. Effect of ratio of wall boundary-layer thickness to jet diameter on mixing of a normal hydrogen jet in a supersonic stream?[M]. Washington, D.C.: National Aeronautics and Space Administration, 1974.
52 FALEMPIN P H. Scramjet development in France[C]∥In Scramjet Propulsion, Vol 189 of Progress in Astronautics and Aeronautics. Reston: AIAA, 2000: 47-118.
53 PORTZ R, SEGAL C. Mixing in high-speed flows with thick boundary layers?[C]?∥40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004.
54 Kush Jr EA, Schetz JA. Liquid jet injection into a supersonic flow. AIAA Journal. 197311(9): 1223-4.
55 FULLER R P, WU P-K, NEJAD A S, et al. Comparison of physical and aerodynamic ramps as fuel injectors in supersonic flow?[J]. Journal of Propulsion and Power199814(2): 135-145.
56 NORTHAM G, ANDERSON G. Survey of supersonic combustion ramjet research at Langley?[C]?∥24th Aerospace Sciences Meeting. Reston: AIAA, 1986.
57 VASIL’EV V I, KRASHENINNIKOV S Y, STEPANOV V A, et al. Numerical investigation of mixing augmentation behind oblique shock waves[J]. AIAA Journal199432(2): 311-316.
58 LIVINGSTON T, SCHINDLER M, SEGAL C, et al. Penetration and spreading of liquid jets in an external-internal compression inlet[J]. AIAA Journal200038(6): 989-994.
59 GUOSKOV O V, KOPCHENOV V I, LOMKOV K E, et al. Numerical research of gaseous fuel pre-injection in hypersonic three-dimensional inlet[J]. Journal of Propulsion and Power200117(6): 1162-1169.
60 OGORODNIKOV D A, VINOGRADOV V A, SHIKHMAN Y M, et al. Russian research on experimental hydrogen-fueled dual-mode scramjet: Conception and preflight tests?[J]. Journal of Propulsion and Power200117(5): 1041-1048.
61 OGORODNIKOV D A, VINOGRADOV V A, PETROV M D, et al. Some results of CIAM scramjet technology[J]. AIAA Journal199999: 4030.
62 VINOGRADOV V A, SHIKHMAN Y M, SEGAL C. A review of fuel pre-injection in supersonic, chemically reacting flows[J]. Applied Mechanics Reviews200760(4): 139-148.
63 GARDNER A D, PAULL A, MCINTYRE T J. Upstream porthole injection in a 2-D scramjet model[J]. Shock Waves200211(5): 369-375.
64 TURNER J C, SMART M K. Application of inlet injection to a three-dimensional scramjet at Mach 8[J]. AIAA Journal201048(4): 829-838.
65 TURNER J, SMART M. Application of radical farming to a 3-D scramjet at Mach 8[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
66 SURAWEERA M V, SMART M K. Shock-tunnel experiments with a Mach 12 rectangular-to-elliptical shape-transition scramjet at offdesign conditions[J]. Journal of Propulsion and Power200925(3): 555-564.
67 DOHERTY L J, SMART M K, MEE D J. Experimental testing of an airframe-integrated three-dimensional scramjet at Mach 10?[J]. AIAA Journal201553(11): 3196-3207.
68 SISLIAN J P, PARENT B. Hypervelocity fuel/air mixing in a shcramjet inlet?[J]. Journal of Propulsion and Power200420(2): 263-272.
69 ALEXANDER D C, SISLIAN J P, PARENT B. Hypervelocity fuel/air mixing in mixed-compression inlets of shcramjets[J]. AIAA Journal200644(10): 2145-2155.
70 WANG Y W, SISLIAN J P. Numerical simulation of gaseous hydrocarbon fuel injection in a hypersonic inlet[J]. Journal of Propulsion and Power201026(5): 1114-1124.
71 PARENT B, SISLIAN J P, SCHUMACHER J. Numerical investigation of the turbulent mixing performance of a cantilevered ramp injector[J]. AIAA Journal200240: 1559-1566.
72 KIM J W, KWON O. Numerical simulation of mixing in an inlet-fueled hypersonic air-breathing propulsion[C]?∥ICAS, 2016, 549-564.
73 BARTH J E, WHEATLEY V, SMART M K. Effects of hydrogen fuel injection in a Mach 12 scramjet inlet[J]. AIAA Journal201553(10): 2907-2919.
74 BARTH J E, WISE D J, WHEATLEY V, et al. Tailored fuel injection for performance enhancement in a Mach 12 scramjet engine?[J]. Journal of Propulsion and Power201935(1): 72-86.
75 PORTZ R, SEGAL C. Penetration of gaseous jets in supersonic flows[J]. AIAA Journal200644(10): 2426-2429.
76 SCHWARTZENTRUBER T E, SISLIAN J P, PARENT B. Suppression of premature ignition in the premixed inlet flow of a shcramjet[J]. Journal of Propulsion and Power200521(1): 87-94.
77 BRICALLI M G, BROWN L M, BOYCE R R. Numerical investigation into the combustion behavior of an inlet-fueled thermal-compression-like scramjet[J]. AIAA Journal201553(7): 1740-1760.
78 BRICALLI M G, BROWN L, BOYCE R R, et al. Thermal and mixing efficiency enhancement in nonuniform-compression scramjets[J]. AIAA Journal201957(11): 4778-4791.
79 VANYAI T, BRIESCHENK S, BRICALLI M, et al. Thermal compression effects within a fundamental, hydrogen-fuelled scramjet?[J]. Aerospace Science and Technology2021110: 106499.
80 姚轩宇, 王春, 喻江, 等. JF12激波风洞高Mach数超燃冲压发动机实验研究[J]. 气体物理20194(5): 25-31.
  YAO X Y, WANG C, YU J, et al. High-Mach-number scramjet engine tests in JF12 shock tunnel[J]. Physics of Gases20194(5): 25-31 (in Chinese).
81 吴里银, 孔小平, 李贤, 等. 马赫数10超燃冲压发动机激波风洞实验研究[J]. 推进技术202142(12): 2818-2825.
  WU L Y, KONG X P, LI X, et al. Experimental study on a scramjet at Mach 10 in shock tunnel[J]. Journal of Propulsion Technology202142(12): 2818-2825 (in Chinese).
82 卢洪波, 林键, 金熠, 等. 马赫数10条件下冲压发动机内氢气燃烧特性试验[J]. 空气动力学学报202442(4): 27-36.
  LU H B, LIN J, JIN Y, et al. Hydrogen combustion experiments of a fullpath scramjet at a Mach 10 condition of high enthalpy shock tunnel[J]. Acta Aerodynamica Sinica202442(4): 27-36 (in Chinese).
83 张子健, 韩信, 马凯夫, 等. 斜爆轰发动机燃烧机理试验研究[J]. 推进技术202142(4): 786-794.
  ZHANG Z J, HAN X, MA K F, et al. Experimental research on combustion mechanism of oblique detonation engines[J]. Journal of Propulsion Technology202142(4): 786-794 (in Chinese).
84 ZHANG Z J, MA K F, ZhANG W S, et al. Numerical investigation of a Mach 9 oblique detonation engine with fuel pre-injection?[J]. Aerospace Science and Technology2020105: 106054.
85 朱呈祥, 黄雨柔, 陈荣钱, 等. 高超声速进气道的裂解碳氢燃料提前喷注研究?[J]. 推进技术201839(1): 196-202.
  ZHU C X, HUANG Y R, CHEN R Q, et al. Pre-injection of cracked hydrocarbon fuel in hypersonic inlets[J]. Journal of Propulsion Technology201839(1): 196-202 (in Chinese).
86 丁宋毅, 孙波, 卓长飞, 等. 高超声速进气道内粉末燃料喷注及流动控制特性研究[J]. 推进技术202243(12): 386-394.
  DING S Y, SUN B, ZHUO C F, et al. Characteristics of powder fuel injection and flow control in hypersonic inlet?[J]. Journal of Propulsion Technology202243(12): 386-394 (in Chinese).
87 渠镇铭, 李海涛, 罗飞腾, 等. 燃料预喷注与释热对高马赫数进气道性能影响的数值研究[J]. 推进技术202445(7): 38-52.
  QU Z M, LI H T, LUO F T, et al. Numerical simulation of fuel pre-injection and heat release effects on higher Mach inlet performance[J]. Journal of Propulsion Technology202445(7): 38-52 (in Chinese).
88 PAULL A, STALKER R J, MEE D J. Experiments on supersonic combustion ramjet propulsion in a shock tunnel[J]. Journal of Fluid Mechanics1995296: 159-183.
89 渠镇铭, 罗飞腾, 陈文娟, 等. 超高速内流壁面边界层惰性工质喷注减阻仿真研究[J]. 推进技术202445(6): 53-71.
  QU Z M, LUO F T, CHEN W J, et al. Numerical simulation of inert gas boundary layer injection for wall skin friction reduction under hypervelocity internal flow[J]. Journal of Propulsion Technology202445(6): 53-71 (in Chinese).
90 XUI R, ZHENG X, YUE L J, et al. Study of shock train/flame interaction and skin-friction reduction by hydrogen combustion in compressible boundary layer[J]. International Journal of Hydrogen Energy202045(31): 15683-15696.
91 ZUO J Y, ZHANG S L, WEI D Y, et al. Effects of combustion on supersonic film cooling using gaseous hydrocarbon fuel as coolant[J]. Aerospace Science and Technology2020106: 106202.
92 QU Z M, LI X K, LUO F T, et al. Mechanisms and characteristics of wall skin friction reduction by boundary layer injection under hypervelocity inflow conditions[J]. International Journal of Heat and Fluid Flow2024106: 109269.
93 LI J Q, LI Y L. Thermodynamic analysis on the performance of hydrocarbon fueled scramjet with inlet active cooling[J]. Energy2024308: 132763.
94 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报201031(5): 1259-1265.
  HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics201031(5): 1259-1265 (in Chinese).
95 岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报202254(2): 263-288.
  YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-Mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics202254(2): 263-288 (in Chinese).
96 唐浩然, 沈赤兵, 杜兆波, 等. 超燃冲压发动机燃料混合增强技术研究进展[J]. 航空兵器202330(1): 80-94.
  TANG H R, SHEN C B, DU Z B, et al. Research progress on fuel mixing enhancement technology of scramjet[J]. Aero Weaponry202330(1): 80-94 (in Chinese).
97 SEINER J M, DASH S M, KENZAKOWSKI D C. Historical survey on enhanced mixing in scramjet engines[J]. Journal of Propulsion and Power200117(6): 1273-1286.
98 KNOWLES K, SADDINGTON A J. A review of jet mixing enhancement for aircraft propulsion applications[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2006220(2): 103-127.
99 PUDSEY A S, BOYCE R R. Numerical investigation of transverse jets through multiport injector arrays in a supersonic crossflow[J]. Journal of Propulsion and Power201026(6): 1225-1236.
100 SCHETZ J A, HAWKINS P F, LEHMAN H. Structure of highly underexpanded transverse jets in a supersonic stream[J]. AIAA Journal19675(5): 882-884.
101 ZHU C X, QIU R F, CHEN R Q, et al. Numerical investigation of fuel pre-injection with different injector configurations in hypersonic inlet[C]?∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
102 LUO F T, QU Z M, LI H T, et al. Thermodynamic cycle performance modeling and numerical simulation of higher Mach scramjet with inlet pre-injection[J]. Thermal Science and Engineering Progress202454: 102775.
103 SURAWEERA M, MEE D, STALKER R. Skin friction reduction in hypersonic turbulent flow by boundary layer combustion?[C]?∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
104 KIRCHHARTZ R, MEE D, STALKER R. Skin friction drag with boundary layer combustion in a circular combustor?[C]?∥15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
105 KIRCHHARTZ R M, MEE D J, STALKER R J. Supersonic skin-friction drag with tangential wall slot fuel injection and combustion?[J]. AIAA Journal201250(2): 313-324.
106 张晓源, 覃粒子, 刘宇, 等. 离解组分复合对超燃尾喷管性能的影响[J]. 推进技术201334(5): 589-594.
  ZHANG X Y, QIN L Z, LIU Y, et al. Effects of radical recombination on scramjet nozzle performance?[J]. Journal of Propulsion Technology201334(5): 589-594 (in Chinese).
107 KOO H, RAMAN V, VARGHESE P L. Direct numerical simulation of supersonic combustion with thermal nonequilibrium[J]. Proceedings of the Combustion Institute201535(2): 2145-2153.
108 FIéVET R, VOELKEL S, KOO H, et al. Effect of thermal nonequilibrium on ignition in scramjet combustors[J]. Proceedings of the Combustion Institute201736(2): 2901-2910.
109 FIéVET R, RAMAN V. Effect of vibrational nonequilibrium on isolator shock structure[J]. Journal of Propulsion and Power201834(5): 1334-1344.
110 吴忧, 陈兵, 杨庆春, 等. 碳氢燃料超燃冲压发动机热非平衡效应[J]. 航空学报202445(11): 529399.
  WU Y, CHEN B, YANG Q C, et al. Effects of thermal nonequilibrium on hydrocarbon?fueled scramjets[J]. Acta Aeronautica et Astronautica Sinica202445(11): 529399 (in Chinese).
111 COCKS P, DAWES W, CANT S. The influence of turbulence-chemistry interaction modelling for supersonic combustion?[C]?∥49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
文章导航

/