稀薄流区的摩阻测量技术及减阻试验
收稿日期: 2024-08-01
修回日期: 2024-09-02
录用日期: 2024-10-08
网络出版日期: 2024-10-15
基金资助
国家级项目
Skin friction measurement technique in rarefied regime and drag force reduction test
Received date: 2024-08-01
Revised date: 2024-09-02
Accepted date: 2024-10-08
Online published: 2024-10-15
Supported by
National Level Project
面向稀薄流区发展了基于摩阻天平的摩阻测量技术,并以提高表面光洁度实现减阻作为应用实例,在高超声速低密度风洞中设计了一种对比测量试验,包括带有光滑壁面和常规壁面的平板模型和摩阻天平,平板模型的光滑壁面和常规壁面对称布置,并依次搭配感应面为光滑壁面和常规壁面的摩阻天平。天平结构体基于悬臂梁原理设计,考虑过载保护和热防护,并通过载荷渐进法实现与试验状态最为接近的微量摩阻载荷校准。通过风洞试验误差的定量评估和主动控制,感应面表面压力引入的误差可控制在1%以内,浮动头错位引入的误差可控制在2%以内。Ma=22的7次重复性风洞试验显示摩阻天平的测量标准偏差不超过2.9%,光滑壁面相比常规壁面可有效减阻,平均减阻率为25.1%。
刘春风 , 何啸天 , 苗文博 , 王雪枫 , 程晓丽 . 稀薄流区的摩阻测量技术及减阻试验[J]. 航空学报, 2025 , 46(12) : 131028 -131028 . DOI: 10.7527/S1000-6893.2024.31028
This paper develops a skin friction measurement technique based on skin friction balance for rarefied flow applications, and applies the technique to improve surface smoothness and reduce drag. A comparative measurement experiment is conducted in a hypersonic low-density wind tunnel, involving flat plate models and skin friction balances with smooth and conventional wall surfaces. The flat plate models are arranged symmetrically with smooth and conventional wall surfaces, each paired with skin friction balances having induction surfaces corresponding to the wall surface type. The balance structure is designed based on the cantilever beam principle, considering overload protection and thermal insulation. Micro-friction loading is achieved through load increment method to calibrate the balance closest to the experimental conditions. Through quantitative evaluation and active control, the error in wind tunnel tests introduced by surface pressure can be controlled within 1% and the error introduced by the offset installation of the balance floating head can be controlled within 2%. Seven repetitive tests at the Mach number of 22 show that the measurement standard deviation of skin friction balance is less than 2.9%; the smooth wall surface is more effective in reducing drag compared to the conventional wall surface, with an average drag reduction rate of 25.1%.
| [1] | SILVESTER T B, MORGAN R G. Skin-friction measurements and flow establishment within a long duct at superorbital speeds?[J]. AIAA Journal, 2008, 46(2): 527-536. |
| [2] | CHOI K S. Near-wall structure of turbulent boundary layer with spanwise-wall oscillation?[J]. Physics of Fluids, 2002, 14(7): 2530-2542. |
| [3] | CHOI K S, DEBISSCHOP J R, CLAYTON B R. Turbulent boundary-layer control by means of spanwise-wall oscillation[J]. AIAA Journal, 1998, 36: 1157-1163. |
| [4] | FUKAGATA K, KERN S, CHATELAIN P, et al. Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction[J]. Journal of Turbulence, 2008, 9(35):1-17. |
| [5] | DANIELLO R J, WATERHOUSE N E, ROTHSTEIN J P. Drag reduction in turbulent flows over superhydrophobic surfaces?[J]. Physics of Fluids, 2009, 21(8): 085103. |
| [6] | RASTEGARI A, AKHAVAN R. On the mechanism of turbulent drag reduction with super-hydrophobic surfaces[J]. Journal of Fluid Mechanics, 2015, 773: R4. |
| [7] | KIM J, KIM K, SUNG H J. Wall pressure fluctuations in a turbulent boundary layer after blowing or suction[J]. AIAA Journal, 2003, 41(9): 1697-1704. |
| [8] | 曾繁宇, 邱云龙, 曹占伟, 等. 超声速湍流边界层阵列式微吹气流动控制与减阻特性[J]. 航空学报, 2023, 44(S2): 729396. |
| ZENG F Y, QIU Y L, CAO Z W, et al. Flow control and drag reduction characteristics of supersonic turbulent boundary layer array micro-blowing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729396 (in Chinese). | |
| [9] | 范云涛, 张阳, 叶志贤, 等. 微吹气对湍流平板边界层流动特性的影响及其减阻机理[J]. 航空学报, 2020, 41(10): 123814. |
| FAN Y T, ZHANG Y, YE Z X, et al. Micro-blowing: Effect on flow characteristics in turbulent flat plate boundary layer and drag reduction mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123814 (in Chinese). | |
| [10] | 樊宇翔, 赵瑞, 左政玄, 等. 气体引射效应对壁面热流和摩擦阻力的影响[J]. 航空学报, 2023, 44(21): 528587. |
| FAN Y X, ZHAO R, ZUO Z X, et al. Gas-injection effects on wall heat flux and skin-friction of vehicles?[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528587 (in Chinese). | |
| [11] | 李俊红, 靳旭红, 刘春风,等 .高超声速跨流域微量气动力实验及计算分析研究[J].航空学报, 2023,44(6):127072. |
| LI J H, JIN X H, LIU C F, et al. Experimental and computational study of micro-aerodynamics across different flow regions?[J]. Acta Aeronautica et Astronautica Sinica, 2023,44(6) 127072 (in Chinese). | |
| [12] | 余平, 段毅, 尘军. 高超声速飞行的若干气动问题[J]. 航空学报, 2015, 36(1): 7-23. |
| YU P, DUAN Y, CHEN J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 7-23 (in Chinese). | |
| [13] | SANG A, ROLLING A, SCHETZ J. A novel skin friction sensor for hypersonic flow[C]?∥25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2006. |
| [14] | FERREIRA M A, RODRIGUEZ-LOPEZ E, GANAPATHISUBRAMANI B. An alternative floating element design for skin-friction measurement of turbulent wall flows?[J]. Experiments in Fluids, 2018, 59(10): 155. |
| [15] | VASUDEVAN B. Measurement of skin friction at hypersonic speeds using fiber-optic sensors[C]∥AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005. |
| [16] | MAGILL S, MACLEAN M, SCHEZT J, et al. Study of direct measuring skin friction gage with rubber compunds for damping[C]∥Fluids 2000 Conference and Exhibit. Reston: AIAA, 2000. |
| [17] | MICHAEL. An experimental investigation of turbulent boundary layers at high mach number and reynolds numbers: NASA CR-112147[R]. Washington D.C., NASA, 1972. |
| [18] | PATEL V C. Calibration of the Preston tube and limitations on its use in pressure gradients[J]. Journal of Fluid Mechanics, 1965, 23(1): 185. |
| [19] | 戴昌晖, 刘天舒, 滕永光, 等. 湍流附面层壁面摩擦应力的测量方法[J]. 航空学报, 1988, 9(5): 203-210. |
| DAI C H, Liu T S, TENG Y G, et al. Measuring techniques for wall shearing stress in turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 1988, 9(5): 203-210 (in Chinese). | |
| [20] | 屠恒章, 李建强, 明晓, 等. 基于MEMS传感器的高速风洞壁面剪切应力直接测量技术[J]. 实验流体力学, 2008, 22(3): 94-97, 104. |
| TU H Z, LI J Q, MING X, et al. Direct measurement technology of wall shear stress in high-speed wind tunnel based on MEMS sensor[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 94-97, 104 (in Chinese). | |
| [21] | Wyatt and East. Low speed measure means of skin friction on a slender wing: RAE TR-66027[R].London:Aeronautical Research Council, 1966. |
| [22] | LIU T S, WOODIGA S, MONTEFORT J, et al. Mapping skin friction fields in complex flows using luminescent oil?[C]?∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
| [23] | 代成果, 张长丰, 黄飓, 等. 高超声速表面摩擦应力油膜干涉测量技术研究[J]. 实验流体力学, 2012, 26(2): 68-71, 85. |
| DAI C G, ZHANG C F, HUANG J, et al. Hypersonic skin friction stress measurements using oil film interferometry technique[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 68-71, 85 (in Chinese). | |
| [24] | 黄湛, 王宏伟, 魏连风, 等. 基于荧光油膜的全局表面摩阻测量技术研究[J]. 空气动力学学报, 2016, 34(3): 373-378, 403. |
| HUANG Z, WANG H W, WEI L F, et al. Research of global skin friction measurement based on fluorescent oil film[J]. Acta Aerodynamica Sinica, 2016, 34(3): 373-378, 403 (in Chinese). | |
| [25] | FERNHOLZ H H, JANKE G, SCHOBER M, et al. New developments and applications of skin-friction measuring techniques[J]. Measurement Science and Technology, 1996, 7(10): 1396-1409. |
| [26] | NAUGHTON J W, SHEPLAK M. Modern developments in shear-stress measurement[J]. Progress in Aerospace Sciences, 2002, 38(6-7): 515-570. |
| [27] | HAKKINEN R. Reflections on fifty years of skin friction measurement?[C]?∥24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2004. |
| [28] | 马洪强, 高贺, 毕志献. 高超声速飞行器相关的摩擦阻力直接测量技术[J]. 实验流体力学, 2011, 25(4): 83-88. |
| MA H Q, GAO H, BI Z X. Direct measurement of skin friction for hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 83-88 (in Chinese). | |
| [29] | TSURU T, TOMIOKA S, KUDO K, et al. Skin-friction measurements in supersonic combustion flows of a scramjet combustor?[C]?∥44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2008. |
| [30] | SMITH T, SCHETZ J, BUI T. Development and ground testing of direct measuring skin friction gages for high enthalpy supersonic flight tests?[C]?∥22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2002. |
| [31] | SCHETZ J. Direct measurement of skin friction in complex flows using movable wall elements[C]?∥24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2004. |
| [32] | MERITT R J, SCHETZ J A, MARINEAU E C, et al. Direct measurements of skin friction at AEDC hypervelocity wind tunnel 9[C]?∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
| [33] | Bowersox, Schetz, Deiwert. Direct measurements of skin friction in hypersonic high enthalpy impulsive scramjet experiments?[C]?∥32nd Aerospace Sciences Meeting & Exhibit. Reston: AIAA,1994. |
| [34] | SMITH T, SCHETZ J, BUI T. Direct skin friction measurement in a rocket-based-combined-cycle scramjet combustor?[C]?∥36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA, 2000. |
| [35] | MERITT R J, DONBAR J M, MOLINARO N J, et al. Error source studies of direct measurement skin friction sensors?[C]?∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
| [36] | BOWERSOX R, SCHETZ J. Skin friction gauges for high enthalpy impulsive flows?[C]?∥5th International Aerospace Planes and Hypersonics Technologies Conference. Reston: AIAA, 1993. |
| [37] | MERITT R J, SCHETZ J A, DONBAR J M, et al. Skin friction sensor for high-speed, high-enthalpy scramjet flow applications?[C]?∥50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston:AIAA, 2014. |
| [38] | MERITT R J, SCHETZ J A. Skin friction sensor validation for high-speed, high-enthalpy flow applications[C]∥30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2014. |
| [39] | GOYNE C P, STALKER R J, PAULL A. Transducer for direct measurement of skin friction in hypervelocity impulse facilities[J]. AIAA Journal, 2002, 40: 42-49. |
| [40] | TSURU T, TOMIOKA S, KUDO K, et al. Skin-friction measurements in supersonic combustion flows of a scramjet combustor[C]?∥44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston:AIAA, 2008. |
| [41] | 吕治国, 李国君, 赵荣娟, 等. 激波风洞高超声速摩阻直接测量技术研究[J]. 实验流体力学, 2013, 27(6): 81-85. |
| LYU Z G, LI G J, ZHAO R J, et al. Direct measurement of skin friction at hypersonic shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6): 81-85 (in Chinese). | |
| [42] | 张陈安, 姚文秀, 陈文龙, 等. 基于压电效应的高超声速摩阻直接测量技术[C]?∥LHD 2012年度夏季学术研讨会. 北京: 中国科学院力学研究所, 2012. |
| ZHANG C A, YAO W X, CHEN W L, et al. Direct measurement of friction for hypersonic shock tunnels based on piezoelectricity[C]?∥LHD 2012 Summer Academic Seminar. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2012 (in Chinese). | |
| [43] | CHENG X Q, WONG C W, ZHOU Y. A high-resolution floating-element force balance for friction drag measurement?[J]. Measurement Science and Technology, 2021, 32(3): 035301. |
| [44] | CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24. |
| [45] | LYNN K C, COMMO S A, PARKER P A. Wind-tunnel force balance characterization for hypersonic research applications[J]. Journal of Aircraft, 2012, 49(2): 556-565. |
| [46] | 刘春风, 熊琳, 刘家骅, 等. 天平校准不确定度的一种评估方法[J]. 实验流体力学, 2016, 30(2): 84-90. |
| LIU C F, XIONG L, LIU J H, et al. A method to estimate the balance calibration uncertainty?[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 84-90 (in Chinese). | |
| [47] | 范月华, 段毅, 周乃桢, 等. 高马赫数层流摩阻数值计算精度[J]. 航空学报, 2021, 42(9): 625737. |
| FAN Y H, DUAN Y, ZHOU N Z, et al. Friction numerical calculation precision in high Mach number laminar flow?[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625737 (in Chinese). | |
| [48] | ALLEN J M. Experimental study of error sources in skin-friction balance measurements[J]. ASME Journal of Fluids Engineering, 1977, 99: 197-204, 1977. |
| [49] | ALLEN J M. Improved sensing element for skin-friction balance measurements?[J]. AIAA Journal, 1980, 18(11): 1342-1345. |
| [50] | ALLEN J M. Systematic study of error sources in supersonic skin-friction balance measurements: NASA-TND-8291[R]. Washington D.C.:NASA, 2015. |
| [51] | MACLEAN M, SCHETZ J A. Numerical study of detailed flow affecting a direct measuring skin-friction gauge[J]. AIAA Journal, 2003, 41(7): 1271-1281. |
/
| 〈 |
|
〉 |