稀薄流区的摩阻测量技术及减阻试验应用

  • 刘春风 ,
  • 何啸天 ,
  • 苗文博 ,
  • 王雪枫 ,
  • 程晓丽
展开
  • 中国航天空气动力技术研究院

收稿日期: 2024-08-01

  修回日期: 2024-10-11

  网络出版日期: 2024-10-15

基金资助

军科委基础加强

Skin friction measurement technique and application for drag force reduction test in rarefied regime

  • LIU Chun-Feng ,
  • HE Xiao-Tian ,
  • MIAO Wen-Bo ,
  • WANG Xue-Feng ,
  • CHENG Xiao-Li
Expand

Received date: 2024-08-01

  Revised date: 2024-10-11

  Online published: 2024-10-15

摘要

本文面向稀薄流区发展了基于摩阻天平的摩阻测量技术,并以提高表面光洁度实现减阻作为应用实例,在高超声速低密度风洞中设计了一种对比测量试验,包括带有光滑壁面和常规壁面的平板模型和摩阻天平,平板模型的光滑壁面和常规壁面对称布置,并依次搭配感应面为光滑壁面和常规壁面的摩阻天平。天平结构体基于悬臂梁原理设计,考虑过载保护和热防护,并通过载荷渐进法实现与试验状态最为接近的微量摩阻载荷校准。通过风洞试验误差的定量评估和主动控制,感应面表面压力引入的误差可控制在1%以内,浮动头错位引入的误差可控制在2%以内。Ma=22的7次重复性风洞试验显示摩阻天平的测量标准偏差不超过2.9%,光滑壁面相比常规壁面可有效减阻,平均减阻率为25.1%。

本文引用格式

刘春风 , 何啸天 , 苗文博 , 王雪枫 , 程晓丽 . 稀薄流区的摩阻测量技术及减阻试验应用[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31028

Abstract

This paper develops a skin friction measurement technique based on skin friction balance for rarefied flow applica-tions, the study focuses on improving surface smoothness to reduce drag, using it as an application case. A com-parative measurement experiment is conducted in a hypersonic low-density wind tunnel, involving flat plate models and skin friction balances with smooth and conventional wall surfaces. The flat plate models are arranged symmet-rically with smooth and conventional wall surfaces, each paired with skin friction balances having induction surfaces corresponding to the wall surface type. The balance structure is designed based on the cantilever beam principle, considering overload protection and thermal insulation. Micro-friction loading is achieved through load increment method to calibrate the balance closest to the experimental conditions. Through quantitative evaluation and active control, the error in wind tunnel tests introduced by surface pressure can be controlled within 1% and the error intro-duced by the offset installation of the balance floating head can be controlled within 2%. 7 repetitive tests at Mach number of 22 shows that the measurement standard deviation of skin friction balance is less than 2.9%, also the smooth wall surface is more effective in reducing drag compared to the conventional wall surface, with an average drag reduction rate of 25.1%.

参考文献

[1] T. B. Silvester, R. G. Morgan, Skin-friction measure-ments and flow establishment within a long duct at su-perorbital speeds. AIAA Journal, Vol.46, No. 2 February 2008
[2] CHOI, K. S. Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14, 2530.
[3] CHOI, K. S., DEBISSCHOP, J.-R., CLAYTON, B. R. Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36, 1157–1163.
[4] FUKAGATA, K., KERN, S., CHATELAIN, P., KOUMOUTSAKOS, P. & KASAGI, N. 2008 Evolu-tionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9, 1–17
[5] DANIELLO, R. J., WATERHOUSE, N. E. & ROTHSTEIN, J. P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21, 085103.
[6] RASTEGARI, A. & AKHAVAN, R. 2015 On the mech-anism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 773, R4
[7] KIM, J., KIM, K. & SUNG, H. J. 2003 Wall pressure fluctuations in a turbulent boundary layer after blowing or suction. AIAA J. 41, 1697–1704.
[8] 李俊红, 靳旭红, 刘春风,等.高超声速跨流域微量气动力实验及计算分析研究[J].航空学报, 2023,44(6): 127072-1-10.
LI J H, JIN X H, LIU C F, et al. Experimental and com-putational study of micro-aerodynamics across different flow regions [J].Acta Aer-onautica et Astronautica Sinica, 2023,44(6): 127072-1-10.
[9] 余平, 段毅, 尘军. 高超声速飞行的若干气动问题 [J]. 航空学报, 2015, 36(1): 7–23.
YU P, DUAN Y, CHEN J. Some aerodynamic issues in hypersonic flighty [J]. Acta Aeronautica et Astronautica Sinica. 2015. 36(1):7–23. (in Chinese)
[10] Alexander K. Sang, A. J. Rolling. A Novel Skin Friction Sensor for Hypersonic Flow[R]. 25th AIAA Aerodynam-ic Measurement Technology and Ground Testing Confer-ence 5-8 June 2006, San Francisco, California. AIAA2006-3837
[11] SILVESTER T B,MORGAN R G. Skin-friction meas-urements and flow establishment within a long duct at superorbital speeds[J].AIAA Journal,2008,46(2):527-536
[12] VASUDEVAN B. Measurement of skin friction at hy-personic speeds using fiber-optic sen-sors[R].AIAA2005-3323
[13] MAGILL S,MACLEAN M,SCHEZT J,et al. Study of direct measuring skin friction gage with rubber com-punds for damping[R].AIAA 2000-2395.
[14] MICHAEL S Holden. An experimental investigation of turbulent boundary layers at high mach number and reynolds numbers[R].NASA CR-112147,1972.
[15] Patel V C. Calibration of the preston tube and limitation on its use in pressure gradients[J]. JFM,1965,23(1):185-288.
[16] Dai C H, Liu T S, Teng Y G,et al. Measuring technology for wall shearing stress in turbulent boundary lay-er[J].Acta Aeronautica et Astronautica Sini-ca,1988,9(5):203-210.(in Chinese)
戴昌晖,刘天舒,滕永光,等.湍流附面层壁面摩擦应力的测量方法[J].航空学报,1988,9(5):203-210.
[17] 屠恒章,李建强,明晓.基于MEMS传感器的高速风洞壁面剪切应力直接测量技术[J]. 实验流体力学.22(3), 2008.9,95-97
[18] Wyatt L A, East L E. Low speed measure means of skin friction on a slender wing[R].RAE TR-66027.London:Aeronautical Research Council,1966
[19] LIU Tian-shu, WOODIGA S, MONTEFORT J, et al. Mapping skin friction fields in complex flows using lu-minescent oil[R].AIAA 2005-267
[20] 代成果, 张长丰, 黄飓.高超声速表面摩擦应力油膜干涉测量技术研究[J]. 实验流体力学,26(2),2012.4
[21] 黄湛, 王宏伟, 魏连风,等.基于荧光油膜的全局表面摩阻测量技术研究[J].空气动力学学报,2016,34(3):373-378.doi:10.7638/kqdlxxb-2015.0119 Huang Z, Wang H W, Wei L F,et al. Research of global skin friction measurement based on fluorescent oil film[J]. Acta Aerodynamica Sinica,2016,34(3):373-378.
[22] Fernholz H H,Janke G,et al.New developments and ap-plications of skin-friction measuring techniques[J].Meas. Sci.Technol,1996,7(10):1396-1409
[23] JONATHAN W Naughton, MARK Sheplak. Modern developments in shear-stress measurement[J]. Progress in Aerospace Science,2002,38:515-570.
[24] Raimo J. Hakkinen. Reflections on Fifty Years of Skin Friction Measurement[R]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Confer-ence, 28 June -1 July 2004, Portland, Oregon, AIAA2004-2111
[25] 马洪强,高贺,毕志献. 高超声速飞行器相关的摩擦阻力直接测量技术[J]. 实验流体力学25(4),2011.8
[26] Taira Tsuru, Hiroyuki Yamasaki. Skin friction Measure-ments in Supersonic Combustion Flows of a Scramjet Combustor[R].44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 2123July2008,Hartford,CT, AIAA2008-4578
[27] Theodore B. Smith, Joseph A. Schetz, Development and ground testing of direct measuring skin friction gages for high enthalpy supersonic flight tests[R],22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference 24-26 June 2002, St. Louis, Mis-souri AIAA2002-3134
[28] Joseph A. Schetz. Direct Measurement of Skin Friction in Complex Flows Using Movable Wall Elements[R]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference28 June -1 July 2004, Portland, Oregon AIAA 2004-2112
[29] Ryan J. Meritt, Joseph A. Schetz. Direct Measurements of Skin Friction at AEDC Hypervelocity Wind Tunnel 9[R] AIAA SciTech 53rdAIAA Aerospace Sciences Meeting 5-9 January 2015, Kissimmee, Florida AIAA 2015-1914
[30] R.Bowersox, J.Schetz, S.Deiwert. Direct measurements of skin friction in hypersonic high enthalpy impulsive scramjet experiments[R].32nd Aerospace Sciences Meet-ing & Exhibit, January 10-13,1994 AIAA94-0585
[31] Theodore B.Smith, Joseph A. Schetz. Direct skin friction measurement in a rocket-based-combined-cycle scramjet combustor[R].36th AIAA/ASME/SAE/ASEE Joint Pro-pulsion Conference & Exhibit, 17-19 July 2000, AIAA2000-3724
[32] Ryan J. Meritt, Jeffrey M. Donbar, Nick J. Molinaro, et.al. Error Source Studies of Direct Measurement Skin Friction Sensors[R]. AIAA2015-1916,53rd AIAA Aero-space Sciences Meeting, 2015, Kissimmee, Florida
[33] R.Bowersox, J.Schetz, Skin friction gauges for high enthalpy impulsive flows[R]. Fifth international aero-space planes and hypersonics technologies conference 30 NOV-3DEC 1993, AIAA-93-5079
[34] Ryan J. Meritt, Joseph A. Schetz. Skin Friction Sensor for High-Speed, High-Enthalpy Scramjet Flow Applica-tions[R]. Propulsion and Energy Forum 50th AIAA / ASME/ SAE/ ASEE Joint Propulsion Conference July 28-30, 2014, Cleveland, OH (AIAA 2014-3942)
[35] Ryan J. Meritt, Joseph A. Schetz. Skin Friction Sensor Validation for High-Speed, High-Enthalpy Flow Applica-tions[R]. AIAA Aviation 30th AIAA Aerodynamic Measurement Technology and Ground Testing Confer-ence 16-20 June 2014, Atlanta, GAAIAA 2014-2800
[36] Goyne C P, Stalker R J, Paull A. Transducer for direct measurement of skin friction in hypervelocity impulse fa-cilities[J].AIAA Journal,2002,40(1):42-49.
[37] Tsuru T, Tomioka S, Kudo K, et al. Skin-friction meas-urements in supersonic combustion flows of a scramjet combustor[R].AIAA-2008-4578,2008.
[38] 吕治国,李国君,赵荣娟,等.激波风洞高超声速摩擦阻力直接测量技术研究[J].实验流体力学,2013,27(6):81-85.
Lyu Z G, Li G J, Zhao R J,et al. Direct measurement of skin friction at hypersonic shock tunnel[J].Journal of Experiments in Fluid Mechanics,2013,27(6):81-85.
[39] 张陈安,姚文秀,陈文龙.基于压电效应的高超声速摩阻直接测量技术[R]. LHD 2012 年度夏季学术研讨会
[40] X Q Cheng, C W Wong, Y Zhou. A high-resolution floating-element force balance for friction drag measure-ment[J]. Measurement Science and Technology,2020.11
[41] X.Q. Cheng, C.W. Wong, F. Hussain, et.al. Flat plate drag reduction using plasma-generated streamwise vorti-ces[J]. J. Fluid Mech. (2021), vol. 918, A24, doi:10.1017/jfm.2021.311
[42] Keith C. Lynn, Sean A. Commo, Peter A. Parker. Wind-Tunnel Balance Characterization for Hypersonic Re-search Applications[J].JOURNAL OF AIRCRAFT Vol. 49, No. 2, March–April 2012
[43] Liu C F, Xiong L, Liu J H, et al. A method to estimate the balance calibration uncertainty. Journal of Experiments in Fluid Mechanics,2016,30(2):84-90.
刘春风, 熊琳, 刘家骅, 等. 天平校准不确定度的一种评估方法. 实验流体力学, 2016,30(2):84-90.
[44] J. M. Allen. Experimental Study of Error Sources in Skin-Friction Balance Measurements. ASME, Transac-tions, Series I-Journal of Fluids Engineering, vol.99, pp.197-204, 1977.
[45] Allen, J. M., “Improved Sensing Element for Skin-Friction Balance Measurements,” AIAA J., vol. 18, no. 11, pp.1342-1345, 1980
[46] Allen, J. M. “Systematic Study of Error Sources in Su-personic Skin-Friction Balance Measurements,” NASA TND-8291, 1976.
[47] MacLean, M. and Schetz, J.A., “Numerical Study of Detailed Flow Affecting a Direct Measuring Skin-Friction Gauge,” AIAA J., vol. 41, no. 7, pp. 1271-1281, 2003.
文章导航

/