分布式涵道风扇气动布局复杂强干扰效应及性能影响
收稿日期: 2024-06-07
修回日期: 2024-07-16
录用日期: 2024-10-10
网络出版日期: 2024-10-15
基金资助
宁波市2025重大攻关项目(2022Z040)
Aerodynamic configuration of distributed ducted fan with complex strong interference effect and performance influence
Received date: 2024-06-07
Revised date: 2024-07-16
Accepted date: 2024-10-10
Online published: 2024-10-15
Supported by
2025 Ningbo Key Scientific and Technological Project(2022Z040)
分布式涵道风扇动力系统被认为是下一代民机设计最具有发展潜力的动力系统之一,多个涵道风扇之间(涵道风扇组),涵道风扇组与机翼/襟翼之间等复杂气动耦合干扰特性与推进性能影响规律制约着新概念分布式电推进飞行器的发展。采用CFD数值模拟和地面试验验证相结合的研究手段,重点开展了单元涵道风扇、涵道风扇组、涵道风扇组与机翼襟翼等分布式涵道风扇构型气动布局形式和参数影响机理研究,从非融合涵道风扇组间距、融合涵道风扇组外形、涵道风扇数量、涵道风扇组地面尾流对推进性能影响等方面,阐释了分布式涵道动力系统在悬停、垂直起降状态下不同构型对推进效率、推力分布及桨叶载荷等的影响关系。研究表明:分布式涵道风扇动力布局对力效影响为3%~5%,横向紧凑布置的分布式涵道风扇会导致相邻涵道之间的入涵气流迎角减小,降低推进力效,内侧涵道受影响最为明显;涵道风扇组融合会引起入涵气流畸变,涵道顶部扩张段产生流动分离,导致力效降低;垂直起降阶段近地面尾流会增大桨叶推力和消耗功率,降低涵道推力,且内侧涵道受影响最明显。离地间距增加后,喷流影响逐渐减弱,力效损失减少。
李卓远 , 杨旭东 , 孙恺 , 熊俊辉 , 史帅 . 分布式涵道风扇气动布局复杂强干扰效应及性能影响[J]. 航空学报, 2025 , 46(3) : 130805 -130805 . DOI: 10.7527/S1000-6893.2024.30805
The distributed ducted fan power system is considered as one of the most potential power systems for the next generation civil aircraft design. The complex aerodynamic coupling between ducted fan group and wing/flap and the influence law of propulsion performance restricts the development of new concept distributed electric propulsion vehicle. Using CFD numerical simulation and ground test, this paper studies the aerodynamic configurations and parameter influence mechanism of distributed ducted fans, such as the single ducted fan, ducted fan group, ducted fan group with flap. The distance between non-fusing ducted fan groups, the shape of fusing ducted fan groups, the number of ducted fans, and the influence of the jet flow on the propulsion performance of the ducted fan groups are analyzed to explore the effects of different configurations of distributed culvert power system on propulsion efficiency, thrust distribution and blade load in hover and vertical take-off and landing states. The results show that the influence of the dynamic configuration of distributed ducted fan on the propulsion performance is about 3%–5%. The transverse compact distributed ducted fan can reduce the angle of attack of the incoming air flow between adjacent ductwork and reduce the propulsion efficiency, and the inner culvert is affected most obviously. The convergence of culvert fan group causes the distortion of air flow into the culvert and the flow separation at the expansion section of the culvert top, resulting in reduction of force effect. In the vertical take-off and landing stage, the near-surface jet increases the blade thrust and consumes power and decreases the ducted thrust, and the inner ducted is affected most obviously. With the increase of the distance from the ground, the effect of jet decreases gradually and the loss of force decreases.
1 | WELLS D. NASA green flight challenge: Conceptual design approaches and technologies to enable 200 passenger Miles per gallon: AIAA-2011-7021[R]. Reston: AIAA, 2011. |
2 | 黄俊.? 分布式电推进飞机设计技术综述[J]. 航 空 学 报, 2021, 42(3): 624037. |
HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronauticaet Astro-nautica Sinica, 2021, 42(3): 624037 (inChinese). | |
3 | 田伟. 全电飞机发展综述[C]∥2016 IEEE中文制导导航与控制会议论文集. 南京: lEEE, 2016. |
TIAN W. Review of more-electric aircrafts[C]?∥2016 IEEE Chinese Guidance, Navigation and Control Conference. Nanjing: IEEE, 2016 (in Chinese). | |
4 | GREITZER E M, BONNEFOY P A, DELA B E, et al. N+3 aircraft concept designs and trade studies: NASA/CR-2010-216794/VOL1?[R]. Washington, D.C.: NASA, 2010. |
5 | 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 25556. |
ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 25556 (in Chinese). | |
6 | 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2016, 37(1): 57-68. |
KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese). | |
7 | MOORE M, FREDERICKS B. Misconceptions of electric propulsion aircraft and their emergent aviation markets:AIAA-2014-0535[R]. Reston: AIAA, 2014. |
8 | NALIANDA D, SINGH R. Turbo-electric distributed propulsion-opportunities, benefits and challenges[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6): 543-549. |
9 | 许和勇, 叶正寅. 涵道螺旋桨与孤立螺旋桨气动特性的数值模拟对比[J]. 航空动力学报, 2011, 26(12): 2820-2825. |
XU H Y, YE Z Y. Numerical simulation and comparison of aerodynamic characteristics between ducted and isolated propellers[J]. Journal of Aerospace Power, 2011, 26(12): 2820-2825 (in Chinese). | |
10 | 李晓华. 涵道风扇外形参数对气动特性的影响分析[D]. 长沙: 国防科技大学, 2014. |
LI X H. Analysis of influence of shape parameters of ducted fan on aerodynamic characteristics[D]. Changsha: National University of Defense Technology, 2014 (in Chinese). | |
11 | HUBBARD H H. Sound measurements for five shrouded propellers: NACA RM L9 J28a[R]. Washington, D. C.: NACA, 1950. |
12 | BENTO H F, DE VRIES R, VELDHUIS L L. Aerodynamic performance and interaction effects of circular and square ducted propellers: AIAA-2020-1029[R]. Reston: AIAA, 2020 |
13 | OHYA Y. Multi-rotor systems using five ducted wind turbines for power output increase (multi lens turbine): AIAA-2019-1296[R]. Reston: AIAA, 2019. |
14 | PERRY A T, ANSELL P J, KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft, 2018, 55(6): 2414-2426. |
15 | 孙蓬勃, 周洲, 郭佳豪. 不同形状涵道风扇推进特性数值分析[J]. 航空动力学报, 2022, 37(12): 2736-2748. |
SUN P B, ZHOU Z, GUO J H. Numerical analysis for propulsion characteristics of ducted fans in different shapes[J]. Journal of Aerospace Power, 2022, 37(12): 2736-2748 (in Chinese). | |
16 | 张阳, 周洲, 郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报, 2021, 42(9): 224977. |
ZHANG Y, ZHOU Z, GUO J H. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224977 (in Chinese). | |
17 | 王科雷, 周洲, 郭佳豪, 等. 分布式动力翼前飞状态动力/气动耦合特性[J]. 航空学报, 2024, 45(2): 132-150. |
WANG K L, ZHOU Z, GUO J H, et al. Propulsive/aerodynamic coupled characteristics of distributed-propulsion-wing during forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 132-150 (in Chinese). | |
18 | 张星雨, 高正红, 雷涛, 等. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报, 2022, 43(8): 25389. |
ZHANG X Y, GAO Z H, LEI T, et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 25389 (in Chinese). | |
19 | MA Y Y, ZHANG W, ZHANG Y Z, et al. Sizing method and sensitivity analysis for distributed electric propulsion aircraft[J]. Journal of Aircraft, 2020, 57(4): 730-741. |
20 | 周芳, 王掩刚, 王思维, 等. 分布式电推进系统中涵道风扇耦合效应的试验与数值研究[J]. 推进技术, 2024, 45(3): 149-159. |
ZHOU F, WANG Y G, WANG S W, et al. Experimental and numerical study on coupling effect of ducted fan in distributed electric propulsion system[J]. Journal of Propulsion Technology, 2024, 45(3): 149-159 (in Chinese). | |
21 | 达兴亚, 范召林, 熊能, 等. 分布式边界层吸入推进系统的建模与分析[J]. 航空学报, 2018, 39(7): 108-116. |
DA X Y, FAN Z L, XIONG N, et al. Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 108-116 (in Chinese). | |
22 | 邓阳平, 米百刚, 詹浩, 等. 涵道螺旋桨地面效应试验与数值计算研究[J]. 西北工业大学学报, 2020, 38(5): 1038-1046. |
DENG Y P, MI B G, ZHAN H, et al. Ground test and numerical simulation on ground effect of ducted propeller system[J]. Journal of Northwestern Polytechnical University, 2020, 38(5): 1038-1046 (in Chinese). |
/
〈 |
|
〉 |