基于合成双射流的翼型阵风载荷减缓
收稿日期: 2023-09-27
修回日期: 2023-12-13
录用日期: 2024-01-18
网络出版日期: 2024-01-26
基金资助
国家自然科学基金联合基金项目(U2141252);国家自然科学基金创新群体(T2221002);湖南省高层次创新人才项目(22+TDRCJH-02-050);国防科技大学青年创新奖项目(青创+2019+07+03);国家科技重大专项(J2019-III-0010-0054)
Airfoil gust load alleviation based on dual synthetic jets
Received date: 2023-09-27
Revised date: 2023-12-13
Accepted date: 2024-01-18
Online published: 2024-01-26
Supported by
Joint Funds of the National Natural Science Foundation of China(U2141252);Science Fund for Creative Research Groups of the Natural Science Foundation of China(T2221002);Hunan Province Level High-level Innovative Talent Project (22+TDRCJH-02-050);National University of Defense Technology Youth Innovation Award Project(Youth Innovation+2019+07+03);National Science and Technology Major Project of China(J2019-III-0010-0054)
为研究基于合成双射流的阵风减缓策略,针对NACA0012翼型在其上表面阵列式布置合成双射流激励器,通过反向射流方式主动诱导流动分离,并详细研究分离涡的演化及动态涡脱落过程,为开展基于零质量射流的载荷控制提供了新的理念。结果表明,随着动量系数Cμ 的增大,合成双射流对于阵风载荷控制能力逐渐提高且没有造成升力系数CL 较大的脉动,当Cμ =0.033时,后缘分离区发展到翼型中部位置,CL,max响应幅值降低了47.9%。由于后缘处分离区较大,关闭射流激励器后分离涡在上翼面的卸载过程会对CL 造成较大影响,在气流冲击分离涡的过程中,上下翼面压差迅速增大进而造成CL 迅速减小;针对这一过程研究Cμ 阶梯递减控制,设置Cμ 区间式变化,相较于持续施加恒定Cμ 的情况,这一控制方法在达到相同减缓幅值的情况下能耗更低,且翼型处于高载荷冲击的时间也更短。
王浩 , 罗振兵 , 邓雄 , 周岩 , 张鉴源 , 赵志杰 . 基于合成双射流的翼型阵风载荷减缓[J]. 航空学报, 2024 , 45(16) : 129660 -129660 . DOI: 10.7527/S1000-6893.2023.29660
To study the gust alleviation strategy based on Dual Synthetic Jets (DSJ), we arrange the actuators in an array on the upper surface of the NACA0012 airfoil, actively induce the flow separation through reverse jets, and study the evolution of the separated vortex and the dynamic vortex shedding, providing a new insight for load control based on the zero-mass jet. The results show that with the increase of the momentum coefficient Cμ, the control ability of DSJ over the gust load is gradually improved without causing large fluctuation of the lift coefficient CL . At Cμ = 0.033, the trailing edge separation zone develops to the middle position of the airfoil, and the response amplitudes of CL,max decrease by 47.9%. Because of the large separation zone at the trailing edge, the unloading process of the separated vortex on the upper wing surface after closing the jet actuator will have a significant impact on CL . In the process of airflow impacting the separated vortex, the pressure difference between the upper and lower wings rapidly increases, leading to rapid decrease of CL . Then, aiming at this process, we study the Cμ step-decreasing control, and set the Cμ interval change. Compared with the case of continuously applying constant Cμ, this control method requires less energy consumption in achieving the same slowing amplitude, and the airfoil also spends less time under high load impact.
1 | DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets, 1977, 14(2): 81-86. |
2 | JOHNSTON J F. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1: load alleviation/extended span development and flight tests: NASA-CR-159097[R]. Washington, D.C.: NASA, 1979. |
3 | AL-BATTAL N H, CLEAVER D J, GURSUL I. Lift reduction by counter flowing wall jets[J]. Aerospace Science and Technology, 2018, 78: 682-695. |
4 | BEWLEY T R. Flow control: new challenges for a new Renaissance[J]. Progress in Aerospace Sciences, 2001, 37(1): 21-58. |
5 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
6 | 王林, 罗振兵, 夏智勋, 等. 合成双射流控制翼型分离流动的数值研究[J]. 空气动力学学报, 2012, 30(3): 353-357, 372. |
WANG L, LUO Z B, XIA Z X, et al. Numerical simulation of separated flow control on an airfoil using dual synthetic jets[J]. Acta Aerodynamica Sinica, 2012, 30(3): 353-357, 372 (in Chinese). | |
7 | CHAN D T, JONES G S, MILHOLEN W E, et al. Transonic drag reduction through trailing-edge blowing on the FAST-MAC circulation control model[C]∥ 35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017: 3246. |
8 | XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2018, 56(2): 554-570. |
9 | 张攀峰, 燕波, 戴晨峰. 合成射流环量控制翼型增升技术[J]. 中国科学: 技术科学, 2012, 42(9): 1046-1053. |
ZHANG P F, YAN B, DAI C F. High-lift technology of airfoil controlled by synthetic jet circulation[J]. Scientia Sinica (Technologica), 2012, 42(9): 1046-1053 (in Chinese). | |
10 | LIU J F, LUO Z B, DENG X, et al. Dual synthetic jets actuator and its applications—part II: novel fluidic thrust-vectoring method based on dual synthetic jets actuator[J]. Actuators, 2022, 11(8): 209. |
11 | KHALIL K, ASARO S, BAUKNECHT A. Active flow control devices for wing load alleviation[J]. Journal of Aircraft, 2021, 59(2): 458-473. |
12 | DE VRIES H, BOEIJE C, CLEINE I, et al. Fluidic load control for wind turbine blades[C]∥ 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 684. |
13 | 王海峰, 邓枫, 刘学强, 等. 基于喷流作用的自然层流翼型阵风载荷减缓控制[J]. 航空学报, 2022, 43(11): 526767. |
WANG H F, DENG F, LIU X Q, et al. Gust load alleviation control based on jets for natural laminar airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526767 (in Chinese). | |
14 | DüSSLER S, SIEBERT F, BAUKNECHT A. Coand?-type flow actuation for load alleviation[J]. Journal of Aircraft, 2022, 59(5): 1303-1319. |
15 | LI Y H, QIN N. Airfoil gust load alleviation by circulation control[J]. Aerospace Science and Technology, 2020, 98: 105622. |
16 | LI Y H, QIN N. Gust load alleviation on an aircraft wing by trailing edge Circulation Control[J]. Journal of Fluids and Structures, 2021, 107: 103407. |
17 | SMITH D R, WARSOP C. NATO AVT-239 task group: ‘innovative control effectors for manoeuvring of air vehicles’?introduction and overview[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0041. |
18 | SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281-2297. |
19 | GLEZER A, AMITAY M. Synthetic jets[J]. Annual Review of Fluid Mechanics, 2002, 34(1): 503-529. |
20 | XU X P, ZHU X P, ZHOU Z, et al. Application of active flow control technique for gust load alleviation[J]. Chinese Journal of Aeronautics, 2011, 24(4): 410-416. |
21 | LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuators[J]. AIAA Journal, 2006, 44(10): 2418-2420. |
22 | AL-BATTAL N, CLEAVER D, GURSUL I. Aerodynamic load control through blowing[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: 1820. |
23 | CS-25 large aeroplanes[EB/OL]. [2023-12-31].. |
24 | COOPERMAN A, BLAYLOCK M, VAN DAM C P. Experimental and simulated control of lift using trailing edge devices[J]. Journal of Physics: Conference Series, 2014, 555: 012019. |
25 | LI Y H, QIN N. Gust load alleviation by normal microjet[J]. Aerospace Science and Technology, 2021, 117: 106919. |
26 | ZAIDE A, RAVEH D. Numerical simulation and reduced-order modeling of airfoil gust response[C]∥ 17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005: 5128. |
/
〈 |
|
〉 |