考虑空化作用的超低温流体迷宫密封特性
收稿日期: 2024-05-08
修回日期: 2024-05-30
录用日期: 2024-07-02
网络出版日期: 2024-09-10
基金资助
国家资助博士后研究人员计划(GZC20240188);中央高校基本科研业务费专项资金(DUT22LAB505);大连市科技创新基金(2023JJ11CG003);长江学者奖励计划(TE2022037);智能制造龙城实验室开放课题(LK202408);高端装备界面科学与技术全国重点实验室开放基金(SKLTKF23B05)
Cryogenic fluid labyrinth sealing characteristics considering cavitation effect
Received date: 2024-05-08
Revised date: 2024-05-30
Accepted date: 2024-07-02
Online published: 2024-09-10
Supported by
Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(GZC20240188);the Fundamental Research Funds for the Central Universities(DUT22LAB505);Science and Technology Innovation Foundation of Dalian(2023JJ11CG003);Changjiang Scholar Program of Chinese Ministry of Education(TE2022037);Open Project of the Intelligent Manufacturing Longcheng Laboratory(LK202408);Tribology Science Fund of the State Key Laboratory of Tribology in Advanced Equipment(SKLTKF23B05)
超低温流体迷宫密封过程中,密封间隙节流压降引发的流体空化现象致使超低温流体动密封性能变化规律和物理机理十分复杂,但目前尚缺乏可预测动密封参数的数学模型,为此开展超低温流体迷宫密封理论与实验研究具有重要意义。为揭示空化作用下的迷宫密封机理,以直通型迷宫结构为研究对象,构建考虑相间热质传递的两相流控制方程,建立迷宫齿隙微小空间内两相流流场变量稳态解析模型,提出超低温流体空化起始位置判别依据,形成空化前后多相态流体齿隙压力与泄漏率解析计算方法,实现超低温流体迷宫密封齿隙流场演变规律的定量描述。结果表明,该解析模型依赖于各级齿隙中两相流含气率,稳态时超低温流体被空化起始齿隙分割成液相流与两相流两部分,其中两相流压力变化趋势与流体饱和压力曲线一致,压降很小;与仿真和实验数据相比,中低转速和压力条件下解析模型预测精度高于85%,空化现象可降低超低温流体质量泄漏率,文中工况下最大降幅达到19.43%。本文研究工作改善了超低温环形动密封缺乏预测模型的现状,可为超低温流体迷宫密封机理揭示、结构设计与性能研究提供理论依据。
韩灵生 , 程奕舜 , 段鑫博 , 曾令旗 , 刘海波 , 刘阔 , 王永青 . 考虑空化作用的超低温流体迷宫密封特性[J]. 航空学报, 2025 , 46(1) : 430652 -430652 . DOI: 10.7527/S1000-6893.2024.30652
Fluid cavitation phenomenon inside the seal clearance caused by throttling pressure drop makes the performance and mechanism of cryogenic dynamic sealing very complex in the process of cryogenic fluid labyrinth sealing, but there is a lack of mathematical model to predict the dynamic sealing parameters. Therefore, it is of great significance to carry out theoretical and experimental research on cryogenic fluid labyrinth sealing. To reveal the cryogenic labyrinth sealing mechanism under cavitation effect, a straight-through labyrinth structure is taken as the research subject, A two-phase flow control equation considering heat and mass transfer between phases are established. Steady-state analytical models of two-phase flow variables inside the limited-space of labyrinth clearance are developed. A criterion of the cavitation starting position of cryogenic fluid in the labyrinth seal is proposed. An analytical calculation method for tooth-clearance pressure and leakage rate of multi-phase fluid is formed to realize the quantitative description for evolution laws of flow field inside labyrinth seal clearances. The results show that the analytical models depend on gaseous phase fraction of two-phase flow in each clearance. Cryogenic fluid is divided into the liquid-phase flow in non-cavitation tooth cavities and the two-phase flow in cavitation tooth cavities by the cavitation starting tooth clearance in the steady state. The pressure change trend of the two-phase flow is consistent with the fluid saturation pressure curve, and its pressure drop is very small. Compared with simulation and experimental data, the prediction accuracy of these two-phase flow analytical models is higher than 85% at low speed and low pressure conditions. The leakage mass-flow rate can be reduced by cavitation, and the maximum reduction is 19.43% under the conditions in this paper. The study can improve the situation with lack of prediction models for cryogenic annular dynamic sealing, and can provide theoretical basis for revealing the mechanism of cryogenic fluid labyrinth sealing, as well as for the structural design and performance research.
1 | ILIEVA G, PIROVSKY C. Labyrinth seals with application to turbomachinery[J]. Materialwissenschaft and Werkstofftechnik, 2019, 50(5): 479-491. |
2 | 王永青, 班仔优, 韩灵生, 等. 液氮内喷式主轴迷宫密封结构变形对泄漏特性的影响[J]. 机械工程学报, 2021, 57(3): 129-136. |
WANG Y Q, BAN Z Y, HAN L S, et al. Reliable transmission and precise regulation of liquid nitrogen as the coolant of cryogenic machine tool[J]. Journal of Mechanical Engineering, 2021, 57(3): 129-136 (in Chinese). | |
3 | 李志刚, 方志, 李军. 液相和多相环境下环形动密封泄漏流动和转子动力特性的研究进展[J]. 西安交通大学学报, 2020, 54(9): 1-22. |
LI Z G, FANG Z, LI J. Review of the leakage flow and rotordynamic characteristics of the annular dynamic seals in liquid and multiple phases conditions[J]. Journal of Xi’an Jiaotong University, 2020, 54(9): 1-22 (in Chinese). | |
4 | CHUPP R E, HENDRICKS R C, LATTIME S B, et al. Sealing in turbomachinery[J]. Journal of Propulsion and Power, 2006, 22(2): 313-349. |
5 | HAN L S, WANG Y Q, LIU K, et al. Theoretical modeling for leakage characteristics of two-phase flow in the cryogenic labyrinth seal[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120151. |
6 | KIM M S, BAE S J, SON S, et al. Study of critical flow for supercritical CO2 seal[J]. International Journal of Heat and Mass Transfer, 2019, 138: 85-95. |
7 | LI Z G, LI Z C, LI J, et al. Static and rotordynamic characteristics for two types of novel hole-pattern seals operating in supercritical CO2 turbomachinery[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2022, 144(7): 71006. |
8 | HAN L S, WANG Y Q, LIU K, et al. Theoretical leakage equations towards liquid-phase flow in the straight-through labyrinth seal[J]. Journal of Tribology-Transactions of the ASME, 2022, 144(3): 31802. |
9 | 李典来. 液氧涡轮泵变腔室长度迷宫密封特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 72-79. |
LI D L. Research on the characteristics of the labyrinth seal with nonuniform distribution cavity length used in the liquid oxygen turbopump[D]. Harbin: Harbin Institute of Technology, 2016: 72-79 (in Chinese). | |
10 | HUGHES W F, CHAO N H. Phase change in liquid face seals Ⅱ—isothermal and adiabatic bounds with real fluids[J]. Journal of Tribology-Transactions of the ASME, 1980, 102(3): 350-357. |
11 | LU X L, ANDRéS L S, YANG J. A nonhomogeneous bulk flow model for gas in liquid flow annular seals: an effort to produce engineering results[J]. Journal of Tribology-Transactions of the ASME, 2022, 144(6): 62302. |
12 | HASSINI M A, ARGHIR M. Phase change and choked flow effects on rotordynamic coefficients of cryogenic annular seals[J]. Journal of Tribology-Transactions of the ASME, 2013, 135(4): 42201. |
13 | GANI M, SANTO I F, ARGHIR M, et al. Model validation of mechanical face seals in two-phase flow conditions[J]. Tribology International, 2022, 167: 107417. |
14 | YANG J, JI X H, CHEN J J, et al. Heat dissipation and energy transfer performance of helium face seal with spiral grooves at cryogenic condition[J]. Applied Thermal Engineering, 2023, 227: 120385. |
15 | WANG T, HUANG W F, LIU Y, et al. A homogeneous phase change model for two-phase mechanical seals with three-dimensional face structures[J]. Journal of Tribology-Transactions of the ASME, 2014, 136(4): 41708. |
16 | 张国渊, 黎旭康, 赵伟刚, 等. 低温高速动静结合型机械密封两相流仿真与实验研究[J]. 航空学报, 2023, 44(23): 628229. |
ZHANG G Y, LI X K, ZHAO W G, et al. Theoretical and experimental study on two-phase flow mechanism of low temperature high-speed hydrodynamic mechanical seal[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628229 (in Chinese). | |
17 | 郝木明, 庄媛, 章大海, 等. 考虑空化效应的螺旋槽液膜密封特性数值研究[J]. 中国石油大学学报(自然科学版), 2015, 39(3): 132-137. |
HAO M M, ZHUANG Y, ZHANG D H, et al. Numerical study on sealing performance of spiral groove liquid film seal considering effects of cavitation[J]. Journal of China University of Petroleum, 2015, 39(3): 132-137 (in Chinese). | |
18 | LI X J, SHEN T J, LI P C, et al. Extended compressible thermal cavitation model for the numerical simulation of cryogenic cavitating flow[J]. International Journal of Hydrogen Energy, 2020, 45(16): 10104-10118. |
19 | 黄永华, 陈国邦. 低温流体热物理性质[M]. 北京: 国防工业出版社, 2014: 153-184. |
HUANG Y H, CHEN G B. Thermophysical properties of cryogenic fluids[M]. Beijing: National Defense Industry Press, 2014: 153-184 (in Chinese). | |
20 | ARAUZ G L, ANDRéS L S. Analysis of two-phase flow in cryogenic damper seals—Part I: theoretical model[J]. Journal of Tribology-Transactions of the ASME, 1998, 120(2): 221-227. |
21 | DOGU Y, SERTCAKAN M C, BAHAR A S, et al. Computational fluid dynamics investigation of labyrinth seal leakage performance depending on mushroom- shaped tooth wear[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2016, 138(3): 32503. |
22 | 张也影. 流体力学[M]. 北京: 高等教育出版社, 1999: 330-332. |
ZHANG Y Y. Fluid mechanics[M]. Beijing: Higher Education Press, 1999: 330-332 (in Chinese). | |
23 | TRUTNOVSKY K. 非接触密封(间隙密封与迷宫密封的原理和应用)[M]. 李均卿, 刁元康, 译. 北京: 机械工业出版社, 1986: 226-227. |
TRUTNOVSKY K. Non-contact seal (principles and applications of clearance seal and labyrinth seal)[M]. LI J Q, DIAO Y K, translated. Beijing: China Machine Press, 1986: 226-227 (in Chinese). | |
24 | WHITE F M. Fluid mechanics[M]. New York: McGraw-Hill, 2011: 428-430. |
25 | TONG L S. Boiling heat transfer and two-phase flow[M]. London: Routledge, 2018: 149-153. |
/
〈 |
|
〉 |