论 文

逆轨拦截的目标命中点分支预测智能制导算法

  • 万清橙 ,
  • 余萌 ,
  • 李玉报 ,
  • 王寅
展开
  • 南京航空航天大学 航天学院,南京 210016
.E-mail: yuxy21@nuaa.edu.cn

收稿日期: 2024-06-26

  修回日期: 2024-07-17

  录用日期: 2024-08-19

  网络出版日期: 2024-09-02

基金资助

国家自然科学基金(U20B2001);青年科技创新基金(NT2024018)

Intelligent guidance algorithm for target hit point branch prediction for head-on interception

  • Qingcheng WAN ,
  • Meng YU ,
  • Yubao LI ,
  • Yin WANG
Expand
  • College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
E-mail: yuxy21@nuaa.edu.cn

Received date: 2024-06-26

  Revised date: 2024-07-17

  Accepted date: 2024-08-19

  Online published: 2024-09-02

Supported by

National Natural Science Foundation of China(U20B2001);Youth Science and Technology Innovation Fund(NT2024018)

摘要

为了实现逆轨拦截机动目标时达到最大拦截末速的目标,基于序列到序列方法构建目标机动弹道分支预测模型,基于深度Q学习算法和偏置制导律构建深度强化学习智能制导律。对于智能制导律训练过程中引发的稀疏奖励问题,采用预测-校正方法引入末制导的导引比以构建终端奖励,结合物理过程和性能指标构建过程奖励,结合过程奖励与终端奖励以提升训练效果。仿真表明目标机动弹道分支预测模型与弹道外推方法相比,在分方向上的机动弹道平均预测精度至少提高67%;在达到交班性能要求和低过载要求的前提下,智能制导律相比于基线制导律在相对拦截速度上提升67%。

本文引用格式

万清橙 , 余萌 , 李玉报 , 王寅 . 逆轨拦截的目标命中点分支预测智能制导算法[J]. 航空学报, 2024 , 45(S1) : 730873 -730873 . DOI: 10.7527/S1000-6893.2024.30873

Abstract

To achieve the maximum interception terminal velocity when intercepting maneuvering targets in the contra-orbit, this paper constructs a target maneuvering ballistic branch prediction model based on the sequence-to-sequence method, and constructs a deep reinforcement learning intelligent guidance law based on the deep Q-learning algorithm and the bias guidance law. To address the sparse reward problem caused by the training process of the smart guidance law, the prediction-correction method is used to introduce the guidance ratio of the terminal guidance to construct the terminal reward, and the process reward is constructed by combining the physical process and performance indexes. The process reward and terminal reward are combined to improve the training effect. Simulation shows that the target maneuvering ballistic branch prediction model improves the average prediction accuracy of the maneuvering ballistic in the sub-direction by at least 67% compared with the ballistic extrapolation method, and the intelligent guidance law improves the relative interception speed by 67% compared with the baseline guidance law on the premise of meeting the requirements of shift performance and low overload.

参考文献

1 蔡远利, 邓逸凡, 苏悦华.高超声速飞行器LSTM弹道分类与预报方法[C]∥第21届中国系统仿真技术及其应用学术年会论文集. 北京: 中国自动化协会, 2020: 303-307.
  CAI Y L, DENG Y F, SU Y H, LSTM based trajectory classification and prediction for hypersonic vehicle[C]?∥ CCSSTA 21st. Beijing: CAA, 2020: 303-307 (in Chinese).
2 吉瑞萍, 张程祎, 梁彦, 等. 基于LSTM的弹道导弹主动段轨迹预报[J]. 系统工程与电子技术202244(6): 1968-1976.
  JI R P, ZHANG C Y, LIANG Y, et al. Trajectory prediction of boost-phase ballistic missile based on LSTM[J]. Systems Engineering and Electronics202244(6): 1968-1976 (in Chinese).
3 宋波涛, 许广亮. 基于 LSTM 与1DCNN 的导弹轨迹预测方法[J].系统工程与电子技术202345(2):504-512.
  SONG B T, XU G L.Missile trajectory prediction method based on LSTM and 1DCNN[J]. Systems Engineering and Electronics202345(2): 504-512.
4 周昶丰, 范世鹏. 考虑终端多约束条件的多项式最优制导律[J]. 弹箭与制导学报202444( 2) : 97-104.
  ZHOU C F, FAN S P. Polynomial optimal guidance law with terminal multi-constraints[J]. Journal of Projectiles, Rockets, Missiles and Guidance202444( 2): 97-104.
5 姚怀瑾, 林德福, 臧路尧, 等. 变结构经典比例导引制导性能对比研究[J]. 计算机仿真201431(7): 31-35.
  YAO H J, LIN D F, ZANG L Y, et al. Performance comparison of variable structure/classic proportional navigation guidance laws[J]. Computer Simulation201431(7): 31-35 (in Chinese).
6 雷文贵, 周浩, 陈万春. 基于 Guass伪谱法的空空导弹中制导方法研究[J/OL]. 飞行力学. (2024-04-07)[2024-06-26]. .
  LEI W G, ZHOU H, CHEN W C. Midcourse guidance method in air-to-air missiles based on Gauss pseudospectral method[J/OL]. (2024-04-07)[2024-6-26]. (in Chinese).
7 马雪飞, 王智, 宋清华, 等. 基于终端角度约束的鱼雷滑模制导律[J].惯性技术学报202331(10):1044-1052+1060.
  MA X F, WANG Z, SONG Q H, et al. Torpedo sliding mode guidance law based on terminal angle constraint[J]. Journal of Chinese Inertial Technology202331(10):1044-1052+1060.
8 李晨迪, 王江, 李斌, 等. 过虚拟交班点的能量最优制导律[J]. 航空学报201940(12): 323249.
  LI C D, WANG J, LI B, et al. Energy-optimal guidance law with virtual hand-over point[J]. Acta Aeronautica et Astronautica Sinica201940(12): 323249 (in Chinese).
9 吴紫怡, 何绍溟, 王亚东, 等. 针对运动目标的可观性增强非线性最优制导律[J].航空学报202344(S2):729750.
  WU Z Y, HE S M, WANG Y D, et al. Nonlinear observability-enhancement optimal guidance law for moving targets[J]. Acta Aeronautica et Astronautica Sinica201940(S2): 729750 (in Chinese).
10 司玉洁, 熊华, 宋勋, 等. 三维自适应终端滑模协同制导律[J].航空学报202041(S1):723759.
  SI Y J, XIONG H, SONG X, et al. Three dimensional guidance law for cooperative operation based on adaptive terminal sliding mode [J]. Acta Aeronautica et Astronautica Sinica202041(S1): 723759 (in Chinese).
11 郑成辰, 李辉, 陶伟, 等. 基于深度强化学习的导弹末端约束角制导律[J]. 战术导弹技术2022 (6): 93-102.
  ZHENG C C, LI H, TAO W,et al. Navigation guidance law with impact angle constraint based on deep reinforcement learning[J].Tactical Missile Technology2022(6): 93-102 (in Chinese).
12 康冰冰, 姜涛, 曹建, 等. 基于强化学习的带落角约束的制导律研究[J]. 航空兵器202330(6): 44-49.
  KANG B B, JIANG T, CAO J, et al. Research on guidance law with constraint attack angle based on reinforcement learning[J]. Aero Weaponry202330(6): 44-49 (in Chinese).
13 张豪, 朱建文, 李小平, 等. 针对高机动目标的深度强化学习智能拦截制导[J/OL]. 北京航空航天大学学报.(2023-09-27)[2024-06-26]. .
  ZHANG H, ZHU J W, LI X P, et al. Deep reinforcement learing intelligent guidance for intercepting high maneuvering targets[J]. Journal of Beijing University of Aeronautics and Astronautics. (2023-09-27)[2024-6-26]. .
14 陈文钰, 邵雷, 谭诗利, 等. 基于虚拟拦截点的预测制导算法设计[J].飞行力学202038(03): 70-76.
  CHEN W Y, SHAO L, TAN S L, et al. Design of predictive guidance algorithm based on virtual intercepting points[J]. FLIGHT DYNAMICS202038(03): 70-76 (in Chinese).
15 舒健生, 孟少飞, 张士熊. 基于虚拟目标的KKV逆轨拦截导引方法[J]. 四川兵工学报201435(4): 5-8.
  SHU J S, MENG S F, ZHANG S X. KKV guidance law for exoatmospheric head-on interception based on virtual target[J]. Journal of Ordnance Equipment Engineering201435(4): 5-8 (in Chinese).
16 CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[C]∥ Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg: Association for Computational Linguistics, 2014: 1724-1734.
17 BENGIO S, VINYALS O, JAITLY N, et al. Scheduled sampling for sequence prediction with recurrent neural networks[J]. Advances in Neural Information Processing Systems2015, 2015-January: 1171-1179.
18 SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. Advances in Neural Information Processing Systems2014, 4(January): 3104-3112.
19 MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[DB/OL]. arXiv Preprint: 1312.5602; 2013.
20 SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay[DB/OL]. arXiv Preprint: 1511.05952; 2015.
21 董朝阳, 周雨. 一种交班时刻性能最优的中制导律设计与仿真[J]. 系统仿真学报200921(24): 7873-7877, 7882.
  DONG C Y, ZHOU Y. Design and simulation of handover performance optimal midcourse guidance law[J]. Journal of System Simulation200921(24): 7873-7877, 7882 (in Chinese).
文章导航

/