基于点云降维的飞机薄壁件化铣刻型轮廓三维检测技术
收稿日期: 2024-05-21
修回日期: 2024-06-04
录用日期: 2024-06-26
网络出版日期: 2024-09-02
基金资助
高精度三维视觉测量仪项目(114-TC220H05N);湖北省技术创新计划项目(2023BIB007);国家重点研发计划(2022YFB3706903)
3D inspection of chemical milling contour for aircraft thin-walled parts based on point cloud dimensionality reduction
Received date: 2024-05-21
Revised date: 2024-06-04
Accepted date: 2024-06-26
Online published: 2024-09-02
Supported by
“High-precision 3D vision measuring instrument” Project of the Ministry of Industry and Information Technology(114-TC220H05N);the Key Research and Development Program of Hubei Province(2023BIB007);the National Key Research and Development Program of China(2022YFB3706903)
飞机蒙皮等航空航天薄壁零件常采用化铣刻型方法完成表面复杂形状图案加工,对其加工图案进行精确检测是保证薄壁零件加工质量的关键环节。但是,受自身重力、夹紧力等因素影响,这类薄壁零件在检测过程中易发生弯曲变形,导致检测结果不稳定。常规方法往往需定制完全贴合曲面形状的夹具对零件进行固定,成本高且效率低,难以满足工业场景的快速检测需求。提出一种基于点云降维的飞机蒙皮化铣刻型轮廓检测方法,创新性地将三维曲面轮廓降维至二维平面,克服零件变形,实现复杂曲面图案的高精度检测。首先,获取蒙皮曲面的CAD标准轮廓作为理想数据,基于结构光技术获取实际零件的图案轮廓点云作为初始数据;然后,基于测量轮廓模型和CAD模型计算测地距离矩阵;最后,基于测地距离矩阵将测量轮廓和标准轮廓同步降维至二维平面,实现加工轮廓图案的误差分析。实验结果表明,所提方法可以实现无夹具的飞机蒙皮化铣刻型图案检测,精度达0.039 mm。
汪勇 , 张攀 , 钟梓彬 , 钟凯 , 李中伟 . 基于点云降维的飞机薄壁件化铣刻型轮廓三维检测技术[J]. 航空学报, 2025 , 46(2) : 430718 -430718 . DOI: 10.7527/S1000-6893.2024.30718
Aerospace thin-walled components, such as aircraft skins, commonly use chemical milling techniques to create complex surface patterns. Therefore, accurately inspecting the processed patterns is crucial in ensuring the machining quality of the thin-walled parts. However, due to factors such as gravity and clamping forces, these parts are susceptible to bending and deformation during the inspection process, leading to inconsistent detection results. Traditional methods often rely on custom fixtures that conform to the curved surface of the parts, which is both costly and inefficient, and may not meet the rapid detection demands of industrial environments. To address these challenges, this paper proposes a novel chemical milling contour detection method for aircraft skins based on point cloud dimensionality reduction. This method innovatively reduces the dimensionality of the 3D surface contour to a 2D plane, thereby mitigating part deformation and enabling high-precision detection of complex surface patterns. Initially, the CAD standard contour of the skin surface is obtained as the reference data, and the pattern contour point cloud of the actual part is captured using structured light technology as the initial data. The geodesic distance matrix is then calculated based on the measured contour model and the CAD model. Finally, both the measured and standard contours are synchronously reduced to a 2D plane using the geodesic distance matrix, facilitating error analysis of the processed contour pattern. Experimental results demonstrate that the proposed method can achieve fixture-free detection of aircraft skin milling patterns with an accuracy of 0.039 mm.
1 | 鲍经洋, 王天星, 刘世博, 等. 铝合金化学铣切工艺研究现状[J]. 全面腐蚀控制, 2022, 36(2): 46-47, 77. |
BAO J Y, WANG T X, LIU S B, et al. Research status of chemical milling of aluminum alloy[J]. Total Corrosion Control, 2022, 36(2): 46-47, 77 (in Chinese). | |
2 | 赵永岗, 张春刚, 王辉, 等. 化学铣切在钛合金加工中的研究及应用[J]. 表面技术, 2009, 38(6): 83-86. |
ZHAO Y G, ZHANG C G, WANG H, et al. Research and application of chemical milling processing for titanium alloy[J]. Surface Technology, 2009, 38(6): 83-86 (in Chinese). | |
3 | 童康康, 张丽艳, 叶南. 航空零件化铣胶膜激光刻线的视觉检测技术研究[J]. 机械制造与自动化, 2019, 48(4): 201-205. |
TONG K K, ZHANG L Y, YE N. Visual Inspection of laser etching curves on chemical milling adhesive film of aircraft parts[J]. Machine Building & Automation, 2019, 48(4): 201-205 (in Chinese). | |
4 | 杨武飞, 蒋建军, 陈雪梅, 等. 低对比度图像高精度轮廓三维重建算法研究[J]. 软件导刊, 2020, 19(6): 223-226. |
YANG W F, JIANG J J, CHEN X M, et al. Research on high precision contour reconstruction algorithms for low contrast image[J]. Software Guide, 2020, 19(6): 223-226 (in Chinese). | |
5 | BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. |
6 | RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm[C]∥Proceedings Third International Conference on 3-D Digital Imaging and Modeling. 2001: 145-152. |
7 | CHEN Y, MEDIONI G. Object modelling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10(3): 145-155. |
8 | BLAIS G, LEVINE M D. Registering multiview range data to create 3D computer objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 820-824. |
9 | 杨现辉, 王惠南. ICP算法在3D点云配准中的应用研究[J]. 计算机仿真, 2010, 27(8): 235-238. |
YANG X H, WANG H N. Application research of ICP algorithm in 3D point cloud alignment[J]. Computer Simulation, 2010, 27(8): 235-238 (in Chinese). | |
10 | LI Q D, GRIFFITHS J G. Iterative closest geometric objects registration[J]. Computers & Mathematics with Applications, 2000, 40(10): 1171-1188. |
11 | 姬鹏, 陈泽曰. 基于NDT和改进ICP融合的点云配准方法[J]. 工业控制计算机, 2022, 35(11): 111-113. |
JI P, CHEN Z Y. Point cloud registration method based on NDT and improved ICP fusion[J]. Industrial Control Computer, 2022, 35(11): 111-113 (in Chinese). | |
12 | AMBERG B, ROMDHANI S, VETTER T. Optimalstep nonrigid ICP algorithms for surface registration[C]∥2007 IEEE Conference on Computer Visionand Pattern Recognition. 2007: 1-8. |
13 | BRONSTEIN A M, BRONSTEIN M M, KIMMEL R. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching[J]. Proceedings of the National Academy of Sciences, 2006, 103(5): 1168-1172. |
14 | CHEN Q F, KOLTUN V. Robust nonrigid registration by convex optimization[C]∥2015 IEEE International Conference on Computer Vision (ICCV). 2015: 2039-2047. |
15 | YAO Y X, DENG B L, XU W W, et al. Fast and robust nonrigid registration using accelerated majorization-minimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(8): 9681-9698. |
16 | 林源, 梁舒, 王生进. 基于非刚性ICP的三维人脸数据配准算法[J]. 清华大学学报(自然科学版), 2014, 54(3): 334-340. |
LIN Y, LIANG S, WANG S J. 3-D faces registration via nonrigid ICP[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(3): 334-340 (in Chinese). | |
17 | KELLER W, BORKOWSKI A. Thin plate spline interpolation[J]. Journal of Geodesy, 2019, 93(9): 1251-1269. |
18 | REBAY S. Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Wats-on algorithm[J]. Journal of Computational Physics, 1993, 106(1): 125-138. |
19 | MITCHELL J S B, MOUNT D M, PAPADIMITR-IOU C H. The discrete geodesic problem[J]. SIAM Journal on Computing, 1987, 16(4): 647-668. |
20 | CHEN J D, HAN Y J. Shortest paths on a polyhedron[C]∥Proceedings of the Sixth Annual Symposium on Computational Geometry. 1990: 360-369. |
21 | SURAZHSKY V, SURAZHSKY T, KIRSANOV D, et al. Fast exact and approximate geodesics on meshes[J]. ACM Transactions on Graphics, 2005, 24(3): 553-560. |
22 | HOUT M C, PAPESH M H, GOLDINGER S D. Multidimensional scaling[J]. Wiley Interdisciplinary Reviews: Cognitive Science, 2013, 4(1): 93-103. |
23 | BALASUBRAMANIAN M, SCHWARTZ E L. The isomap algorithm and topological stability[J]. Science, 2002, 295(5552): 7. |
24 | WANG G, LI W L, JIANG C, et al. Machining allowance calculation for robotic edge milling an aircraft skin considering the deformation of assembly process[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3350-3361. |
/
〈 |
|
〉 |