综述

仿生螺旋结构纤维增强复合材料力学性能研究进展

  • 王昕 ,
  • 季海波 ,
  • 李振 ,
  • 李秉洋 ,
  • 章琪 ,
  • 张瑞 ,
  • 徐翔 ,
  • 孟晗 ,
  • 王鹏飞 ,
  • 卢天健
展开
  • 1.中国航天科技创新研究院 先进材料与能源研究中心,北京 100088
    2.南京航空航天大学 航空航天结构力学及控制全国重点实验室,南京 210016
    3.南京航空航天大学 多功能轻量化材料与结构工信部重点实验室,南京 210016
    4.北京大学 工学院,北京 100871
    5.武汉纺织大学 纺织新材料及先进加工技术国家重点实验室,武汉 430200
    6.安徽农业大学 工学院,合肥 230036
.E-mail: hvhe@163.com

收稿日期: 2023-12-15

  修回日期: 2024-04-29

  录用日期: 2024-07-01

  网络出版日期: 2024-08-21

基金资助

国家自然科学基金(12402407);北京市科技新星计划(20230484287)

Recent advances in mechanical properties of fibre-reinforced composites with bio-inspired helicoidal lay-ups

  • Xin WANG ,
  • Haibo JI ,
  • Zhen LI ,
  • Bingyang LI ,
  • Qi ZHANG ,
  • Rui ZHANG ,
  • Xiang XU ,
  • Han MENG ,
  • Pengfei WANG ,
  • Tianjian LU
Expand
  • 1.Advanced Materials and Energy Center,China Academy of Aerospace Science and Innovation,Beijing 100088,China
    2.State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    3.MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    4.College of Engineering,Peking University,Beijing 100871,China
    5.State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Wuhan Textile University,Wuhan 430200,China
    6.School of Engineering,Anhui Agricultural University,Hefei 230036,China
E-mail: hvhe@163.com

Received date: 2023-12-15

  Revised date: 2024-04-29

  Accepted date: 2024-07-01

  Online published: 2024-08-21

Supported by

National Natural Science Foundation of China(12402407);Beijing Nova Program(20230484287)

摘要

仿生螺旋结构纤维增强复合材料是受生物外骨骼和鳞片微观结构启发而设计的一种新型复合材料。该结构通过在单向铺层中引入的层间转角,能够显著降低复合材料在受载时的层间应力,从而提高层间粘接性能和抗冲击能力。本文综述并评价了仿生螺旋灵感的来源、常见的构型与制备工艺、静/动态力学性能的研究现状及应用前景,分析了仿生螺旋复合材料的动/静态力学响应及其力学机理,仿生螺旋铺层作为一种新兴设计思路对提升纤维增强复合材料刚度、强度及韧性等具有显著优势。通过总结现有仿生螺旋结构在复合材料领域的研究进展与不足,对未来的发展方向进行了探讨与展望。本文的研究成果对于设计力学性能优异的仿生复合材料具有理论和实践指导意义。

本文引用格式

王昕 , 季海波 , 李振 , 李秉洋 , 章琪 , 张瑞 , 徐翔 , 孟晗 , 王鹏飞 , 卢天健 . 仿生螺旋结构纤维增强复合材料力学性能研究进展[J]. 航空学报, 2024 , 45(19) : 29987 -029987 . DOI: 10.7527/S1000-6893.2024.29987

Abstract

Fiber-reinforced composites with bio-inspired helicoidal lay-ups are a new type of composites inspired by the microstructure of biological exoskeletons and scales. The helicoidal lay-ups are able to significantly reduce the interlaminar stresses of transversely loaded composites by introducing small inter-ply angles, thus improving the interlaminar properties and impact resistance. This paper presents a state-of-the-art review of bio-inspired helicoidal composites, including bionics principles, typical configurations, fabrication methods, application prospects, and the current research advances in their static/dynamic mechanical properties. The static/dynamic mechanical responses and underlying enhancement mechanisms of bio-inspired helicoidal composites are systematically analyzed. It has been clarified that as a kind of emerging design method, stacking unidirectional laminates helicoidally with small interply angles results in improvements in stiffness, strength and toughness of fibre-reinforced composites compared with the traditional cross-ply or quasi-isotropic ones. By summarizing the shortcomings of the existing efforts, the future development trend of bio-inspired helicoidal composites is discussed. In a word, the concluding remarks raised in this paper are of great theoretical and practical significance for the design of high-performance fibre-reinforced composites.

参考文献

1 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报202138(6): 1629-1650.
  XIONG J, LI Z B, LIU H B, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica202138(6): 1629-1650 (in Chinese).
2 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报202239(9): 4187-4195.
  FENG Z H, LI J N, TIAN Y L, et al. Research progress of advanced composite materials for aerospace applications[J]. Acta Materiae Compositae Sinica202239(9): 4187-4195 (in Chinese).
3 徐悦. 碳纤维复合材料的性能分析及其在航空领域的应用 [J]. 化学工程与装备2023(5): 200-202.
  XU Y. Performance analysis of carbon fiber composites and their application in aviation [J]. Chemical Engineering & Equipment2023(5): 200-202 (in Chinese).
4 黄亿洲, 王志瑾, 刘格菲. 碳纤维增强复合材料在航空航天领域的应用[J]. 西安航空学院学报202139(5): 44-51.
  HUANG Y Z, WANG Z J, LIU G F. Application of carbon fiber reinforced composite in aerospace[J]. Journal of Xi’an Aeronautical University202139(5): 44-51 (in Chinese).
5 慕琴琴, 燕群, 杭超, 等. 不同厚度及冲击角度对复合材料平板抗冲击能力的影响[J]. 实验力学202338(1): 142-150.
  MU Q Q, YAN Q, HANG C, et al. Effect of different thickness and impact angel on the impact resistance of composite flat panels[J]. Journal of Experimental Mechanics202338(1): 142-150 (in Chinese).
6 郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能[J]. 复合材料学报202239(8): 3674-3683.
  ZHENG H, LI Y, TU H Y. Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica202239(8): 3674-3683 (in Chinese).
7 刘晓军, 战丽, 邹爱玲, 等. 纤维增强复合材料层间增韧技术研究进展 [J]. 复合材料科学与工程2022 (1): 117-128.
  LIU X J, ZHAN L, ZHOU A L, et al. Research progress on interlaminar toughening technology of fiber reinforced composites [J]. Composites Science and Engineering2022 (1): 117-128 (in Chinese).
8 GHAZLAN A, NGO T, TAN P, et al. Inspiration from Nature’s body armours-A review of biological and bioinspired composites[J]. Composites Part B: Engineering2021205: 108513.
9 PLOCHER J, MENCATTELLI L, NARDUCCI F, et al. Learning from nature: Bio-inspiration for damage-tolerant high-performance fibre-reinforced composites[J]. Composites Science and Technology2021208: 108669.
10 HUANG W, RESTREPO D, JUNG J Y, et al. Multiscale toughening mechanisms in biological materials and bioinspired designs[J]. Advanced Materials201931(43): e1901561.
11 APICHATTRABRUT T, RAVI-CHANDAR K. Helicoidal composites[J]. Mechanics of Advanced Materials and Structures200613(1): 61-76.
12 CHENG L, WANG L Y, KARLSSON A M. Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica[J]. Journal of Materials Research200924(11): 3253-3267.
13 BOULIGAND Y. Sur une architecture torsadée répandue dans de nombreuses cuticules d'Arthropodes [J]. CR Acad Sci1965261: 3665-3668.
14 RAABE D, SACHS C, ROMANO P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material[J]. Acta Materialia200553(15): 4281-4292.
15 GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomaterialia201410(9): 3997-4008.
16 RAABE D, ROMANO P, SACHS C, et al. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue[J]. Journal of Crystal Growth2005283(1-2): 1-7.
17 SHARMA A, SHUKLA N K, BELARBI M O, et al. Bio-inspired nacre and helicoidal composites: From structure to mechanical applications[J]. Thin-Walled Structures2023192: 111146.
18 MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological materials: Structure and mechanical properties[J]. Progress in Materials Science200853(1): 1-206.
19 ZHAO S C, YIN X M, ZHANG D Y. A study of a bio-inspired impact resistant carbon fiber laminate with a sinusoidal helicoidal structure in the mandibles of trap-jaw ants[J]. Acta Biomaterialia2023169: 179-191.
20 YARAGHI N A, GUARíN-ZAPATA N, GRUNENFELDER L K, et al. A sinusoidally architected helicoidal biocomposite[J]. Advanced Materials201628(32): 6835-6844.
21 HUANG W, SHISHEHBOR M, GUARíN-ZAPATA N, et al. A natural impact-resistant bicontinuous composite nanoparticle coating[J]. Nature Materials202019: 1236-1243.
22 GRUNENFELDER L K, MILLIRON G, HERRERA S, et al. Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles[J]. Advanced Materials201830(9): 1705295.
23 NALEWAY S E, TAYLOR J R A, PORTER M M, et al. Structure and mechanical properties of selected protective systems in marine organisms[J]. Materials Science and Engineering: C201659: 1143-1167.
24 VERMA D, TOMAR V. Structural-nanomechanical property correlation of shallow water shrimp (Pandalus platyceros) exoskeleton at elevated temperature[J]. Journal of Bionic Engineering201411(3): 360-370.
25 FABRITIUS H O, SACHS C, TRIGUERO P R, et al. Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The exoskeleton of the lobster homarus americanus[J]. Advanced Materials200921(4): 391-400.
26 CHENG L, WANG L Y, KARLSSON A M. Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior[J]. Journal of Materials Research200823(11): 2854-2872.
27 RAABE D, ROMANO P, SACHS C, et al. Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus[J]. Materials Science and Engineering: A2006421(1-2): 143-153.
28 BOSSELMANN F, ROMANO P, FABRITIUS H, et al. The composition of the exoskeleton of two Crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus[J]. Thermochimica Acta2007463(1): 65-68.
29 CHEN P Y, LIN A Y M, MCKITTRICK J, et al. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomaterialia20084(3): 587-596.
30 CHEN B, PENG X, CAI C, et al. Helicoidal microstructure of Scarabaei cuticle and biomimetic research[J]. Materials Science and Engineering: A2006423(1-2): 237-242.
31 YIN S, YANG R H, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology2021205: 108650.
32 ZIMMERMANN E A, GLUDOVATZ B, SCHAIBLE E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour[J]. Nature Communications20134: 2634.
33 PATEK S N, CALDWELL R L. Extreme impact and cavitation forces of a biological hammer: Strike forces of the peacock mantis shrimp Odontodactylus scyllarus[J]. The Journal of Experimental Biology2005208(Pt 19): 3655-3664.
34 WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer[J]. Science2012336(6086): 1275-1280.
35 MOHAMED S A, MOHAMED N, ELTAHER M A. Bending, buckling and linear vibration of bio-inspired composite plates[J]. Ocean Engineering2022259: 111851.
36 GUO C, HE J. Multi-scale concurrent analysis for bio-inspired helicoidal CFRP laminates and experimental investigation[J]. Composite Structures2022296: 115886.
37 YIN S, CHEN H Y, YANG R H, et al. Tough nature-inspired helicoidal composites with printing-induced voids[J]. Cell Reports Physical Science20201: 100109.
38 LIU J L, LEE H P, TAN V B C. Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology2018165: 282-289.
39 LIU J L, LEE H P, LAI K S, et al. Bio-inspired laminates of different material systems[J]. Journal of Applied Mechanics202087(3): 031007.
40 RIVERA J, YARAGHI N A, HUANG W, et al. Modulation of impact energy dissipation in biomimetic helicoidal composites[J]. Journal of Materials Research and Technology20209(6): 14619-14629.
41 PINTO F, IERVOLINO O, SCARSELLI G, et al. Bioinspired twisted composites based on Bouligand structures[C]∥ Bioinspiration, biomimetics, and bioreplication 2016. SPIE, 2016.
42 CHENG L, THOMAS A, GLANCEY J L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A: Applied Science and Manufacturing201142(2): 211-220.
43 JIANG H Y, REN Y R, LIU Z H, et al. Low-velocity impact resistance behaviors of bio-inspired helicoidal composite laminates with non-linear rotation angle based layups[J]. Composite Structures2019214: 463-475.
44 DHARI R S, PATEL N P, WANG H X, et al. Numerical investigation of Fibonacci series based bio-inspired laminates under impact loading[J]. Composite Structures2021255: 112985.
45 LIU J L, LEE H P, TAN V B C. Failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology2018157: 99-106.
46 ZHANG X Y, LUAN Y B, LI Y C, et al. Bioinspired design of lightweight laminated structural materials and the intralayer/interlayer strengthening and toughening mechanisms induced by the helical structure[J]. Composite Structures2021276: 114575.
47 阿拉腾沙嘎, 蒋禅, 胡嘉起. 仿生螺旋结构复合材料研究进展[J]. 化工新型材料202250(11): 1-4.
  ALATENG S, JIANG S, HU J Q. Research progress in biomimetic spiral structure composites[J]. New Chemical Materials202250(11): 1-4 (in Chinese).
48 NING H B, FLATER P, GASKEY B, et al. Failure mechanisms of 3D printed continuous fiber reinforced thermoplastic composites with complex fiber configurations under impact[J]. Progress in Additive Manufacturing20249(4): 753-766.
49 何亚飞, 矫维成, 杨帆, 等. 树脂基复合材料成型工艺的发展[J]. 纤维复合材料201128(2): 7-13.
  HE Y F, JIAO W C, YANG F, et al. The development of polymer composites forming process[J]. Fiber Composites201128(2): 7-13 (in Chinese).
50 AKHOUNDI B, BEHRAVESH A H, BAGHERI SAED A. Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer[J]. Journal of Reinforced Plastics and Composites201938(3): 99-116.
51 李岩, 龙昱, 郝潞岑, 等. 3D打印纤维增强复合材料力学性能研究进展[J]. 力学季刊202243(4): 731-750.
  LI Y, LONG Y, HAO L C, et al. Recent advances in the mechanical properties of 3D printed fiber-reinforced composites[J]. Chinese Quarterly of Mechanics202243(4): 731-750 (in Chinese).
52 OUYANG W, GONG B W, WANG H, et al. Identifying optimal rotating pitch angles in composites with Bouligand structure[J]. Composites Communications202123: 100602.
53 RIBBANS B, LI Y J, TAN T. A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures[J]. Journal of the Mechanical Behavior of Biomedical Materials201656: 57-67.
54 YANG F, YI F J, XIE W H. The role of ply angle in interlaminar delamination properties of CFRP laminates[J]. Mechanics of Materials2021160: 103928.
55 ZAHERI A, FENNER J S, RUSSELL B P, et al. Revealing the mechanics of helicoidal composites through additive manufacturing and beetle developmental stage analysis[J]. Advanced Functional Materials201828(33): 1803073.
56 LEREW D, FLATER P, GASKEY B, et al. Mechanical behavior of bio-inspired helicoidal thermoplastic composites[J]. Journal of Thermoplastic Composite Materials202437(3): 1094-1110.
57 MEO M, RIZZO F, PORTUS M, et al. Bioinspired helicoidal composite structure featuring functionally graded variable ply pitch[J]. Materials202114(18): 5133.
58 MOHAMED S A, MOHAMED N, ABO-BAKR R M, et al. Multi-objective optimization of snap-through instability of helicoidal composite imperfect beams using Bernstein polynomials method[J]. Applied Mathematical Modelling2023120: 301-329.
59 MORIKAWA K, YAHIRO H, MATSUMOTO T. Visual examination of flexural cracking behaviors in a helicoidally laminated composite[J]. Procedia Engineering2017171: 1301-1307.
60 NWAMBU C N, ROBERT C, ALAM P. Viscoelastic properties of bioinspired asymmetric helicoidal CFRP composites[J]. MRS Advances20227(31): 805-810.
61 SHI M D, HAN Z W, HAN Q G, et al. Research on the mechanical and water-repellent properties of bionic carbon fiber reinforced plastic composites inspired by coelacanth scale and lotus leaf[J]. Composites Science and Technology2022226: 109542.
62 WANG K, WU X D, AN L H, et al. Crack modes and toughening mechanism of a bioinspired helicoidal recursive composite with nonlinear recursive rotation angle-based layups[J]. Journal of the Mechanical Behavior of Biomedical Materials2023142: 105866.
63 YANG R H, WANG H T, WANG B, et al. Sinusoidally architected helicoidal composites inspired by the dactyl club of mantis shrimp[J]. International Journal of Smart and Nano Materials202314(3): 321-336.
64 SHANG J S, NGERN N H H, TAN V B C. Crustacean-inspired helicoidal laminates[J]. Composites Science and Technology2016128: 222-232.
65 PARUTHI S, SHARMA N, GULIA R, et al. Thermal-based free vibration and buckling behavior of bio-inspired cross- and double-helicoidal/bouligand laminated composite plates[J]. Acta Mechanica Solida Sinica202336(6): 933-942.
66 LU T Y, SHEN H S, WANG H, et al. Optimization design and secondary buckling of bio-inspired helicoidal laminated plates under thermomechanical loads[J]. Composite Structures2023321: 117344.
67 LUO H Y, WANG H S, ZHAO Z Y, et al. Experimental and numerical investigation on the failure behavior of Bouligand laminates under off-axis open-hole tensile loading[J]. Composite Structures2023313: 116932.
68 VILLARRAGA J, BUSTAMANTE GóEZ L M, ZAVATTIERI P. Fiber angle influence and toughness characterization of bioinspired discontinuous fiber helicoids composite materials produced via additive manufacturing[J]. Revista EIA202320(40): 1-15.
69 NWAMBU C, ROBERT C, ALAM P. The tensile behaviour of unaged and hygrothermally aged asymmetric helicoidally stacked CFRP composites[J]. Journal of Composites Science20226(5): 137.
70 NWAMBU C, ROBERT C, ALAM P. Tensile behaviour of unaged and hygrothermally aged discontinuous Bouligand structured CFRP composites[J]. Oxford Open Materials Science20233(1): itac016.
71 DELAUNOIS Y, TITS A, GROSSMAN Q, et al. Design strategies of the mantis shrimp spike: How the crustacean cuticle became a remarkable biological harpoon[J]. Natural Sciences20233(3): e20220060.
72 LI W H, HUANG W Z, XIONG Y, et al. Failure mechanism and heat treatment effect of 3D-printed bio-inspired helicoidal CF/PEEK composites[J]. Composites Communications202337: 101464.
73 SHARMA A, BELARBI M O, GARG A, et al. Bending analysis of bio-inspired helicoidal/Bouligand laminated composite plates[J]. Mechanics of Advanced Materials and Structures2023: 1-15.
74 HAN Q G, CHEN S T, WANG J H, et al. Biomimetic laminated basalt fiber-reinforced composite with sinusoidally architected helicoidal structure integrating superior mechanical properties and microwave-transmissibility[J]. Composites Science and Technology2023231: 109836.
75 HAN Q G, QIN H L, LIU Z H, et al. Experimental investigation on impact and bending properties of a novel dactyl-inspired sandwich honeycomb with carbon fiber[J]. Construction and Building Materials2020253: 119161.
76 SUKSANGPANYA N, YARAGHI N A, KISAILUS D, et al. Twisting cracks in Bouligand structures[J]. Journal of the Mechanical Behavior of Biomedical Materials201776: 38-57.
77 SUKSANGPANYA N, YARAGHI N A, PIPES R B, et al. Crack twisting and toughening strategies in Bouligand architectures[J]. International Journal of Solids and Structures2018150: 83-106.
78 YANG F, XIE W H, MENG S H. Crack-driving force and toughening mechanism in crustacean-inspired helicoidal structures[J]. International Journal of Solids and Structures2021208-209: 107-118.
79 MENCATTELLI L, PINHO S T. Ultra-thin-ply CFRP Bouligand bio-inspired structures with enhanced load-bearing capacity, delayed catastrophic failure and high energy dissipation capability[J]. Composites Part A: Applied Science and Manufacturing2020129: 105655.
80 WU K J, SONG Z Q, ZHANG S S, et al. Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity[J]. Proceedings of the National Academy of Sciences of the United States of America2020117(27): 15465-15472.
81 LIU J L, MENCATTELLI L, ZHI J, et al. Lightweight, fiber-damage-resistant, and healable bio-inspired glass-fiber reinforced polymer laminate[J]. Polymers202214(3): 475.
82 HE J, GUO C, LI W K. Understanding the helicoidal damage behavior of bio-inspired laminates by conducting multiscale concurrent simulation and experimental analysis[J]. Composite Structures2023314: 116972.
83 LIU J L, LEE H P, KONG S H R, et al. Improving laminates through non-uniform inter-ply angles[J]. Composites Part A: Applied Science and Manufacturing2019127: 105625.
84 ZHANG X F, YUAN Y N. Bioinspired hybrid helical structure in lobster Homarus Americanus: Enhancing penetration resistance and protective performance[J]. Composites Part A: Applied Science and Manufacturing2024177: 107927.
85 LIU J L, LEE H P, TAY T E, et al. Healable bio-inspired helicoidal laminates[J]. Composites Part A: Applied Science and Manufacturing2020137: 106024.
86 CHEW E, LIU J L, TAY T E, et al. Improving the mechanical properties of natural fibre reinforced laminates composites through Biomimicry[J]. Composite Structures2021258: 113208.
87 GARG A, BELARBI M O, CHALAK H D, et al. Buckling and free vibration analysis of bio-inspired laminated sandwich plates with helicoidal/Bouligand face sheets containing softcore[J]. Ocean Engineering2023270: 113684.
88 LIAN X, ZHANG W D, MAO Y M, et al. Buckling optimization of curved grid-stiffened helicoidal composite panel including the factor of mode shape in multiple load cases[J]. Composite Structures2023322: 117383.
89 LU X C, ZHANG X M, LI Y B, et al. Enhanced low-velocity impact resistance of helicoidal composites by fused filament fabrication (FFF)[J]. Polymers202214(7): 1440.
90 LIU J L, SINGH A K, LEE H P, et al. The response of bio-inspired helicoidal laminates to small projectile impact[J]. International Journal of Impact Engineering2020142: 103608.
91 KAZEMI M E, MEDEAU V, GREENHALGH E, et al. Bio-inspired interleaved hybrids: Novel solutions for improving the high-velocity impact response of carbon fibre-reinforced polymers (CFRP)[J]. Composites Part B: Engineering2023264: 110930.
92 GARG A, BELARBI M O, LI L, et al. Free vibration analysis of bio-inspired helicoid laminated composite plates[J]. The Journal of Strain Analysis for Engineering Design202358(7): 538-548.
93 LU T Y, SHEN H S, WANG H, et al. Linear and nonlinear free vibration and optimal design of bio-inspired helicoidal CFRPC laminated plates[J]. International Journal of Structural Stability and Dynamics202424(9): 2450098.
94 OUYANG W, WANG H, DONG J L, et al. Cross-helicoidal approach to the design of damage-resistant composites[J]. Composite Structures2023306: 116577.
95 韩登安, 徐丹, 叶仁传, 等. 冰雹载荷下基于碳纤维增强复合材料的腔棘鱼鳞双螺旋仿生结构的撞击损伤分析[J]. 高压物理学报202236(4): 164-172.
  HAN D A, XU D, YE R C, et al. Analysis on damage of double-helicoidal carbon fiber reinforced polymer bionic structure inspired by coelacanth scales under hail load[J]. Chinese Journal of High Pressure Physics202236(4): 164-172 (in Chinese).
96 WANG C Z, SU D D, XIE Z F, et al. Dynamic behaviour of Bio-inspired heterocyclic aramid fibre-reinforced laminates subjected to low-velocity drop-weight impact[J]. Composites Part A: Applied Science and Manufacturing2022153: 106733.
97 YANG F, XIE W H, MENG S H. Impact and blast performance enhancement in bio-inspired helicoidal structures: A numerical study[J]. Journal of the Mechanics and Physics of Solids2020142: 104025.
98 ZHAO S C, ZHANG D Y, YAN Y P, et al. Investigation of bionic composite laminates inspired by the natural impact-resistant helicoidal structure in the mandibles of trap-jaw ants[J]. Bioinspiration & Biomimetics202318(5): 056005.
99 DENG Y B, JIANG H Y, REN Y R. Low-velocity impact resistance behaviors of bionic double-helicoidal composite laminates[J]. International Journal of Mechanical Sciences2023248: 108248.
100 MENCATTELLI L, PINHO S T. Realising bio-inspired impact damage-tolerant thin-ply CFRP Bouligand structures via promoting diffused sub-critical helicoidal damage[J]. Composites Science and Technology2019182: 107684.
101 GINZBURG D, PINTO F, IERVOLINO O, et al. Damage tolerance of bio-inspired helicoidal composites under low velocity impact[J]. Composite Structures2017161: 187-203.
102 WANG Z, LUO Q T, LI Q, et al. Design optimization of bioinspired helicoidal CFRPP/GFRPP hybrid composites for multiple low-velocity impact loads[J]. International Journal of Mechanical Sciences2022219: 107064.
103 GE X X, ZHANG P, ZHAO F, et al. Experimental and numerical investigations on the dynamic response of woven carbon fiber reinforced thick composite laminates under low-velocity impact[J]. Composite Structures2022279: 114792.
104 YANG F, XIE W H, MENG S H. Global sensitivity analysis of low-velocity impact response of bio-inspired helicoidal laminates[J]. International Journal of Mechanical Sciences2020187: 106110.
105 LIU J L, PHAM V N H, TAY T E, et al. Bio-inspired helicoidal thin-ply carbon fiber reinforced epoxy laminates with nylon microparticles for improved toughness and healing[J]. Composites Part A: Applied Science and Manufacturing2023171: 107588.
106 ABIR M R, TAY T E, LEE H P. On the improved ballistic performance of bio-inspired composites[J]. Composites Part A: Applied Science and Manufacturing2019123: 59-70.
107 WANG H X, WANG C Z, HAZELL P J, et al. Insights into the high-velocity impact behaviour of bio-inspired composite laminates with helicoidal lay-ups[J]. Polymer Testing2021103: 107348.
108 KARTHIKEYAN K, KAZEMAHVAZI S, RUSSELL B P. Optimal fibre architecture of soft-matrix ballistic laminates[J]. International Journal of Impact Engineering201688: 227-237.
文章导航

/