基于NSGA-III-SAM算法的冲压发动机喷管性能预测

  • 闵科 ,
  • 蔡泽君 ,
  • 张加乐 ,
  • 朱呈祥
展开
  • 厦门大学

收稿日期: 2024-07-05

  修回日期: 2024-08-12

  网络出版日期: 2024-08-20

基金资助

国家自然科学基金;国家自然科学基金

The Prediction of Scramjet Nozzle Performance Based on NSGA-III-SAM Algorithm

  • MIN Ke ,
  • CAI Ze-Jun ,
  • ZHANG Jia-Le ,
  • ZHU Cheng-Xiang
Expand

Received date: 2024-07-05

  Revised date: 2024-08-12

  Online published: 2024-08-20

摘要

喷管的排气特性直接影响冲压发动机的整体工作性能,如何实现喷管性能的有效预测,预防其发生急剧变化对于发动机的稳定工作十分关键。在不同飞行条件下对三维非对称喷管进行了数值模拟,搭建了不同马赫数和落压比下的喷管性能预测数据集。考虑到传统多目标优化算法易陷入局部最优,为此提出了一种模拟退火式变异优化的非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-III-Simulated Annealing Mutation, NSGA-III-SAM),用于提取喷管壁面的最优压力特征。通过以最优压力特征数据作为输入,轴向推力系数、俯仰力矩系数和升力系数作为输出,建立了基于一维卷积神经网络(One Dimension-Convolutional Neural Network, 1D-CNN)的喷管性能参数预测模型,并利用马赫4.5~6.0过膨胀状态数据对模型进行验证。结果表明,NSGA-III-SAM算法所提取的最优压力位置,能够使模型具备高精度、快速预测的性能,各性能参数平均绝对误差均在0.5%范围内,最大绝对误差不超过0.8%,平均预测时间仅需0.6ms左右。所构建的预测模型及方法能够为喷管性能监测及排气工况调节奠定可靠的技术基础。

本文引用格式

闵科 , 蔡泽君 , 张加乐 , 朱呈祥 . 基于NSGA-III-SAM算法的冲压发动机喷管性能预测[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.30910

Abstract

The exhaust characteristics of a nozzle directly affect the overall performance of the scramjet engine. It is crucial to effective-ly predict the nozzle performance to prevent drastic changes for the stable operation of the engine. Numerical simulations of three-dimensional asymmetric nozzles under different flight conditions were conducted to build a dataset for predicting noz-zle performance under various Mach numbers and nozzle pressure ratios. Considering the limitations of traditional multi-objective optimization algorithms, a Non-dominated Sorting Genetic Algorithm-III-Simulated Annealing Mutation (NSGA-III-SAM) was proposed to extract optimal wall pressure measurement points for the nozzle. By using the optimal pressure characteristic data as input and the axial thrust coefficient, pitching moment coefficient, and lift coefficient as outputs, a nozzle performance parameter prediction model based on One Dimension-Convolutional Neural Network (1D-CNN) was established and validated by the data of over-expanded states at Mach numbers from 4.5 to 6.0. The results show that the optimal pressure positions extracted by the NSGA-III-SAM algorithm enable the model to have high-precision and rapid pre-diction performance, with the average absolute error of all performance parameters within 0.5%, and the maximum absolute error not exceeding 0.8%, and the average prediction time is only about 0.6ms. The constructed prediction model and method provide a reliable technical foundation for monitoring nozzle performance and adjusting exhaust conditions.

参考文献

[1] 林鹏,庄福建,曲林锋,等.高超声速飞机喷管设计-制造与验证技术发展综述[J]. 航空学报, 2022, 43(06): 52-62.
Lin P, ZHUANG F J, QU L F, et al. Technological de-velopment in hypersonic nozzle design, manufacture and validation: A review[J]. Acta Aeronautica et As-tronautica Sinica, 2022, 43(06): 52-62 (in Chinese).
[2] 徐惊雷. 超燃冲压及TBCC组合循环发动机喷管设计方法研究进展[J]. 推进技术, 2018, 39(10): 2236-2251.
XU J L. Research progress on the design methodolo-gy of the tail nozzle of the super-ignition ramjet and TBCC combined cycle engine[J]. Journal of propul-sion technology, 2018, 39(10): 2236-2251 (in Chi-nese).
[3] Lv Z, Xu J L, Song G T, et al. Review on the aerody-namic issues of the exhaust system for scramjet and turbine based combined cycle engine[J]. Progress in Aerospace Sciences, 2023, 143: 1-35.
[4] LI J P, SONG W Y, XING Y, et al. Influences of Ge-ometric Parameters upon Nozzle Performances in Scramjets[J]. Chinese Journal of Aeronautics, 2008, 21(6): 506–511.
[5] 于洋. RBCC单边膨胀喷管过膨胀流动分离现象及机理研究[D]. 南京航空航天大学, 2017.
Yu Y. Research on over-expansion flow separation phenomenon and mechanism of RBCC unilateral ex-pansion nozzle [D]. Nanjing University of Aero-nautics and Astronautics, 2017 (in Chinese)..
[6] Hiraiwa T, Tomioka S, Ueda S, et al. Performance variation of scramjet nozzle at various nozzle pressure ratios[J]. Journal of Propulsion and Power, 1995, 11(3): 403-408.
[7] 晏至辉, 刘卫东. 超燃冲压发动机喷管数值分析[J]. 导弹与航天运载技术, 2006, (05): 50-52.
YAN Z H, LIU W D. Numerical analysis of the noz-zle of a scramjet engine[J]. Missile and Space Trans-portation Technology, 2006, (05): 50-52 (in Chinese).
[8] 文科, 李旭昌, 马岑睿, 等. 不同入口马赫数对超燃冲压发动机喷管的性能影响研究[J]. 火箭推进, 2011, 37(03): 18-21.
WEN K, LI X C, MA C R, et al. Effects of different inlet Mach numbers on the performance of the nozzle of a scramjet engine[J]. Rocket Propulsion, 2011, 37(03): 18-21 (in Chinese).
[9] 文科, 李旭昌, 马岑睿, 等. 超燃冲压发动机喷管性能数值模拟研究[J]. 弹箭与制导学报, 2011, 31(05): 125-128.
WEN K, LI X C, MA Z R, et al. Numerical simula-tion of nozzle performance of a scramjet engine[J]. Journal of Missiles and Guidance, 2011, 31(05): 125-128 (in Chinese).
[10] 全志斌, 徐惊雷, 李斌, 等. 超燃冲压发动机喷管非均匀进口的冷流试验与数值模拟[J].航空学报, 2013, 34(10): 2308-2315.
Quan Z B, Xu J L, Li B, et al. Cold flow test and numerical simulation of the non-uniform inlet of the nozzle of a scramjet engine[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2308-2315 (in Chinese).
[11] Lv Z, Xu J L, Yu K K, et al. Experimental and nu-merical investigations of a scramjet nozzle at various operations[J]. Aerospace Science and Technology, 2019, 96: 1-12.
[12] Sun Y F, Duan C X, Li R F, et al. Combined effects of inlet airflow temperature and upper expansion angle on the performance of scramjet nozzle[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(7): 1037–1046.
[13] 贺旭照, 秦思, 卫锋, 等. 吸气式高超声速飞行器非均匀尾喷流试验[J]. 航空学报, 2017, 38(03): 40-47.
HE X Z, QIN S, WEI F, et al. Test of non-uniform tail jet of aspirating hypersonic vehicle[J]. Acta Aero-nautica et Astronautica Sinica, 2017, 38(03): 40-47 (in Chinese).
[14] Yu D R, Chang J T, Bao W, et al. Optimal Classifica-tion Criterions of Hypersonic Inlet Start/Unstart[J]. Journal of Propulsion and Power, 23(2): 310-316, 2007.
[15] Chang J T, Yu D R, Bao W, et al. A CFD Assessment of Classifications for Hypersonic Inlet Start/Unstart Phenomena[J]. Aeronautical Journal, 113(1142): 263-271, 2008.
[16] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(02): 182-197.
[17] Deb K, Jain H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solv-ing Problems With Box Constraints[J]. IEEE Transac-tions on Evolutionary Computation, 2014,18(4): 577–601.
[18] ZHANG Q F, Li H. MOEA/D: A multiobjective evo-lutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007,11(6): 712-731.
[19] 王青, 谷良贤, 龚春林. 超燃冲压发动机可调喷管多目标优化设计[J]. 推进技术, 2013, 34(3): 294-299.
WANG Q, GU L X, GONG C L. Multi-objective op-timization design of adjustable tail nozzle for scram-jet engine[J]. Journal of propulsion technology, 2013, 34(3): 294-299 (in Chinese).
[20] 石波, 盛刚, 黄雪刚, 等. 吸气式发动机可调喷管调节片结构优化设计[J].火箭推进, 2021, 47(3): 52-59.
SHI B, SHENG G, HUANG X G, et al. Optimized de-sign of adjustable nozzle adjusting plate structure for aspirated engine[J]. Rocket Propulsion, 2021, 47(3): 52-59 (in Chinese).
[21] 杨洪涛, 游广飞, 徐亮, 等. 超声速风洞喷管冷却结构的多目标优化设计[J]. 航空动力学报, 2023, 38(5): 1047-1057.
Yang H T, You G F, Xu L, et al. Multi-objective op-timization design of nozzle cooling structure for su-personic wind tunnel[J]. Journal of Aerospace Dy-namics, 2023, 38(5): 1047-1057 (in Chinese).
[22] WANG Z H, SUN X, CHEN S. Multi-objective pa-rameters optimization design of self-excited oscilla-tion pulsed atomizing nozzle[J]. Journal of the Brazil-ian Society of Mechanical Sciences and Engineering, 2019, 41(11): 510-521.
[23] SHENG X, YOU Y X, WU Y, et al. Multi-objective optimization of the geometric parameters of a pres-sure-swirl nozzle[J]. Journal of the Chinese Institute of Engineers, 2022, 45(8): 713–723.
[24] Zhao Y, Zheng S J. Nozzle dimension design for air-craft engine infrared signature and thrust active con-trol using MOEA/D. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 1-6.
[25] Bufi E A, Cinnella P. Robust optimization of super-sonic ORC nozzle guide vanes[J]. Journal of Physics: Conference Series, 2017, 821: 1-10.
[26] F.W. Spaid, E.R. Keener. Experimental Results for a Hypersonic Nozzle/Afterbody Flow Field, 1992. AIAA Paper 1992-3915.
[27] Zhao X. Simulated annealing algorithm with adaptive neighborhood[J]. Applied soft computing, 2011, 11(2): 1827–1836.
文章导航

/