[1] 林鹏,庄福建,曲林锋,等.高超声速飞机喷管设计-制造与验证技术发展综述[J]. 航空学报, 2022, 43(06): 52-62.
Lin P, ZHUANG F J, QU L F, et al. Technological de-velopment in hypersonic nozzle design, manufacture and validation: A review[J]. Acta Aeronautica et As-tronautica Sinica, 2022, 43(06): 52-62 (in Chinese).
[2] 徐惊雷. 超燃冲压及TBCC组合循环发动机喷管设计方法研究进展[J]. 推进技术, 2018, 39(10): 2236-2251.
XU J L. Research progress on the design methodolo-gy of the tail nozzle of the super-ignition ramjet and TBCC combined cycle engine[J]. Journal of propul-sion technology, 2018, 39(10): 2236-2251 (in Chi-nese).
[3] Lv Z, Xu J L, Song G T, et al. Review on the aerody-namic issues of the exhaust system for scramjet and turbine based combined cycle engine[J]. Progress in Aerospace Sciences, 2023, 143: 1-35.
[4] LI J P, SONG W Y, XING Y, et al. Influences of Ge-ometric Parameters upon Nozzle Performances in Scramjets[J]. Chinese Journal of Aeronautics, 2008, 21(6): 506–511.
[5] 于洋. RBCC单边膨胀喷管过膨胀流动分离现象及机理研究[D]. 南京航空航天大学, 2017.
Yu Y. Research on over-expansion flow separation phenomenon and mechanism of RBCC unilateral ex-pansion nozzle [D]. Nanjing University of Aero-nautics and Astronautics, 2017 (in Chinese)..
[6] Hiraiwa T, Tomioka S, Ueda S, et al. Performance variation of scramjet nozzle at various nozzle pressure ratios[J]. Journal of Propulsion and Power, 1995, 11(3): 403-408.
[7] 晏至辉, 刘卫东. 超燃冲压发动机喷管数值分析[J]. 导弹与航天运载技术, 2006, (05): 50-52.
YAN Z H, LIU W D. Numerical analysis of the noz-zle of a scramjet engine[J]. Missile and Space Trans-portation Technology, 2006, (05): 50-52 (in Chinese).
[8] 文科, 李旭昌, 马岑睿, 等. 不同入口马赫数对超燃冲压发动机喷管的性能影响研究[J]. 火箭推进, 2011, 37(03): 18-21.
WEN K, LI X C, MA C R, et al. Effects of different inlet Mach numbers on the performance of the nozzle of a scramjet engine[J]. Rocket Propulsion, 2011, 37(03): 18-21 (in Chinese).
[9] 文科, 李旭昌, 马岑睿, 等. 超燃冲压发动机喷管性能数值模拟研究[J]. 弹箭与制导学报, 2011, 31(05): 125-128.
WEN K, LI X C, MA Z R, et al. Numerical simula-tion of nozzle performance of a scramjet engine[J]. Journal of Missiles and Guidance, 2011, 31(05): 125-128 (in Chinese).
[10] 全志斌, 徐惊雷, 李斌, 等. 超燃冲压发动机喷管非均匀进口的冷流试验与数值模拟[J].航空学报, 2013, 34(10): 2308-2315.
Quan Z B, Xu J L, Li B, et al. Cold flow test and numerical simulation of the non-uniform inlet of the nozzle of a scramjet engine[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2308-2315 (in Chinese).
[11] Lv Z, Xu J L, Yu K K, et al. Experimental and nu-merical investigations of a scramjet nozzle at various operations[J]. Aerospace Science and Technology, 2019, 96: 1-12.
[12] Sun Y F, Duan C X, Li R F, et al. Combined effects of inlet airflow temperature and upper expansion angle on the performance of scramjet nozzle[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(7): 1037–1046.
[13] 贺旭照, 秦思, 卫锋, 等. 吸气式高超声速飞行器非均匀尾喷流试验[J]. 航空学报, 2017, 38(03): 40-47.
HE X Z, QIN S, WEI F, et al. Test of non-uniform tail jet of aspirating hypersonic vehicle[J]. Acta Aero-nautica et Astronautica Sinica, 2017, 38(03): 40-47 (in Chinese).
[14] Yu D R, Chang J T, Bao W, et al. Optimal Classifica-tion Criterions of Hypersonic Inlet Start/Unstart[J]. Journal of Propulsion and Power, 23(2): 310-316, 2007.
[15] Chang J T, Yu D R, Bao W, et al. A CFD Assessment of Classifications for Hypersonic Inlet Start/Unstart Phenomena[J]. Aeronautical Journal, 113(1142): 263-271, 2008.
[16] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(02): 182-197.
[17] Deb K, Jain H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solv-ing Problems With Box Constraints[J]. IEEE Transac-tions on Evolutionary Computation, 2014,18(4): 577–601.
[18] ZHANG Q F, Li H. MOEA/D: A multiobjective evo-lutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007,11(6): 712-731.
[19] 王青, 谷良贤, 龚春林. 超燃冲压发动机可调喷管多目标优化设计[J]. 推进技术, 2013, 34(3): 294-299.
WANG Q, GU L X, GONG C L. Multi-objective op-timization design of adjustable tail nozzle for scram-jet engine[J]. Journal of propulsion technology, 2013, 34(3): 294-299 (in Chinese).
[20] 石波, 盛刚, 黄雪刚, 等. 吸气式发动机可调喷管调节片结构优化设计[J].火箭推进, 2021, 47(3): 52-59.
SHI B, SHENG G, HUANG X G, et al. Optimized de-sign of adjustable nozzle adjusting plate structure for aspirated engine[J]. Rocket Propulsion, 2021, 47(3): 52-59 (in Chinese).
[21] 杨洪涛, 游广飞, 徐亮, 等. 超声速风洞喷管冷却结构的多目标优化设计[J]. 航空动力学报, 2023, 38(5): 1047-1057.
Yang H T, You G F, Xu L, et al. Multi-objective op-timization design of nozzle cooling structure for su-personic wind tunnel[J]. Journal of Aerospace Dy-namics, 2023, 38(5): 1047-1057 (in Chinese).
[22] WANG Z H, SUN X, CHEN S. Multi-objective pa-rameters optimization design of self-excited oscilla-tion pulsed atomizing nozzle[J]. Journal of the Brazil-ian Society of Mechanical Sciences and Engineering, 2019, 41(11): 510-521.
[23] SHENG X, YOU Y X, WU Y, et al. Multi-objective optimization of the geometric parameters of a pres-sure-swirl nozzle[J]. Journal of the Chinese Institute of Engineers, 2022, 45(8): 713–723.
[24] Zhao Y, Zheng S J. Nozzle dimension design for air-craft engine infrared signature and thrust active con-trol using MOEA/D. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 1-6.
[25] Bufi E A, Cinnella P. Robust optimization of super-sonic ORC nozzle guide vanes[J]. Journal of Physics: Conference Series, 2017, 821: 1-10.
[26] F.W. Spaid, E.R. Keener. Experimental Results for a Hypersonic Nozzle/Afterbody Flow Field, 1992. AIAA Paper 1992-3915.
[27] Zhao X. Simulated annealing algorithm with adaptive neighborhood[J]. Applied soft computing, 2011, 11(2): 1827–1836.