柔性气动减速技术专栏群伞减速系统刚柔耦合动力学建模与分析
收稿日期: 2024-05-30
修回日期: 2024-07-15
录用日期: 2024-07-24
网络出版日期: 2024-07-31
基金资助
航天进入减速与着陆实验室基金(EDL-19092114);宇航动力学国家重点实验室基金(2022ADL-J006)
Rigid-flexible coupling dynamic modeling for parachute cluster deceleration system
Received date: 2024-05-30
Revised date: 2024-07-15
Accepted date: 2024-07-24
Online published: 2024-07-31
Supported by
Laboratory Foundation of Aerospace Entry, Descent and Landing Technology(EDL-19092114);State Key Laboratory Foundation of Astronautic Dynamics(2022ADL-J006)
群伞减速系统被新一代可重复使用载人飞船普遍采用,对群伞系统进行动力学分析评估是航天器减速任务设计分析的重要环节。针对航天器群伞减速系统建立了多阶段、变结构、多维度刚柔耦合非线性多体动力学模型,分析了系统动力学模型的特点,指出群伞减速系统动力学具有复杂系统动力学的属性。通过仿真分析了航天器、减速伞和主伞在系统仿真中的动力学和运动参数,并对蒙特卡洛偏差仿真的结果进行了总结。仿真验证和分析结果表明,建立的刚柔耦合动力学模型能够准确模拟群伞减速系统工作过程和群伞碰撞等动力学行为。最后,针对降落伞减速系统动力学存在的问题和未来发展进行了分析和建议。
王海涛 , 雷江利 , 荣伟 . 柔性气动减速技术专栏群伞减速系统刚柔耦合动力学建模与分析[J]. 航空学报, 2025 , 46(1) : 630750 -630750 . DOI: 10.7527/S1000-6893.2024.30750
The parachute cluster deceleration system is widely used by the new generation reusable manned spacecraft, and dynamic analysis and evaluation of the parachute cluster system is an important task in the design and analysis of spacecraft deceleration missions. A multi-stage, variable structure and high-dimensional rigid-flexible coupling nonlinear multi-body dynamics model is established for the spacecraft parachute deceleration system. The characteristics of the system dynamics model are analyzed, and it is pointed out that the dynamics of the parachute cluster deceleration system have the dynamics properties of complex system. The dynamics and motion parameters of spacecraft, the drogue, and the main parachute are simulated and analyzed, and the results of Monte Carlo uncertainty simulation are summarized. The simulation and analysis results show that the established rigid-flexible coupling dynamic model can accurately simulate the working process of the parachute cluster deceleration system and the dynamic behavior of parachute group collisions. Finally, the existing problems and future developments in the dynamics of parachute deceleration systems are also discussed.
1 | 荣伟, 王海涛. 航天器回收着陆技术[M]. 北京: 中国宇航出版社, 2019. |
RONG W, WANG H T. Spacecraft recovery landing technology[M]. Beijing: Aerospace Press of China, 2019 (in Chinese). | |
2 | 王海涛, 郭鹏, 荣伟. 航天器降落伞减速系统动力学[M]. 北京: 科学出版社, 2023. |
WANG H T, GUO P, RONG W. Dynamics of spacecraft parachute deceleration system[M]. Beijing: Science Press, 2023 (in Chinese). | |
3 | WOLF D. Dynamic stability of a nonrigid parachute and payload system[J]. Journal of Aircraft, 1971, 8(8): 603-609. |
4 | IBRAHIM S K, ENGDAHL R A. Parachute dynamics and stability analysis: CR-120326[R]. Washington,D.C.: NASA, 1974. |
5 | 程文科. 一般降落伞-载荷系统动力学及其动稳定性分析[D]. 长沙: 国防科技大学, 2000. |
CHENG W K. Dynamic stability analysis of the general parachute and load system[D]. Changsha: National University of Defense Technology, 2000 (in Chinese). | |
6 | RAISZADEH B, QUEEN E M. Virginia partial validation of multibody program to optimize simulated trajectories II (POST II) parachute simulation with interacting forces: TM-2002-211634[R]. Washington,D.C.: NASA, 2002. |
7 | RAISZADEH B. Multibody parachute flight simulations for planetary entry trajectories using “Equilibrium Points”[C]∥13th AAS/AIAA Space Flight Mechanics Meeting.Reston: AIAA, 2003. |
8 | WOLF D, SPAHR H. A parachute cluster dynamic analysis[C]∥Proceedings of the 5th Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1975. |
9 | WOLF D. A dynamic analysis of the SRB parachute system[C]∥Proceedings of the 11th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1991. |
10 | WOLF D, HEINDEL K. A steady rotation motion for a cluster of parachutes[C]∥Proceedings of the 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005. |
11 | YASMIN A, BRUCE S. Orion multi-purpose crew vehicle solving and mitigating the two main cluster pendulum problem[C]∥24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017. |
12 | MACHIN R, RAY E. Pendulum motion in main parachute clusters[C]∥23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015. |
13 | RAY E. Reconstruction of Orion EDU parachute inflation loads[C]∥AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013. |
14 | RAY E. Updated reconstruction methods for modeling Orion parachute loads[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
15 | DANIEL G M, EUGENE A M, PEI J, et al. Application of system identification to parachute modeling:TM-2019-220410[R]. Washington, D.C.: NASA, 2019. |
16 | 柯鹏, 杨春信, 杨雪松, 等. 重型货物空投系统过程仿真及特性分析[J]. 航空学报, 2006, 27(5): 856-860. |
KE P, YANG C X, YANG X S, et al. System simulation and analysis of heavy cargo airdrop system[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 856-860 (in Chinese). | |
17 | 宁雷鸣. 物-伞系统动力学高保真数值仿真技术及流固耦合算法研究[D]. 南京: 南京航空航天大学, 2018. |
NING L M. Research on high fidelity numerical simulation technology and fluid-structure coupling algorithm of object-parachute system dynamics[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
18 | 雷江利, 牟金岗, 赵广秀, 等. 新一代载人飞船试验船回收着陆系统任务特点分析[J]. 国际太空, 2020(9): 6. |
LEI J L, MOU J G, ZHAO G X, et al. Analysis of the recovery and landing system mission characteristics for the new generation manned spacecraft test capsule [J]. Space International, 2020(9): 6 (in Chinese). | |
19 | 洪嘉振, 刘铸永. 变拓扑柔性多体系统接触碰撞动力学研究[J]. 动力学与控制学报, 2013, 11(1): 5-11. |
HONG J Z, LIU Z Y. Study on contact/impact dynamics of flexible multibody system with topology variable[J]. Journal of Dynamics and Control, 2013, 11(1): 5-11 (in Chinese). | |
20 | 董富祥, 洪嘉振. 多体系统动力学碰撞问题研究综述[J]. 力学进展, 2009, 39(3): 352-359. |
DONG F X, HONG J Z. Review of impact problem for dynamics of multibody system[J]. Advances in Mechanics, 2009, 39(3): 352-359 (in Chinese). | |
21 | 代雨柔, 李健, 薛晓鹏, 等. 超声速下盘缝带伞不同收口方式的气动特性[J]. 航空学报, 2024, 45(7): 68-80. |
DAI Y R, LI J, XUE X P, et al. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 68-80 (in Chinese). | |
22 | 包文龙, 贾贺, 薛晓鹏, 等. 开 “窗” 结构对环帆伞开伞过程影响[J]. 航空学报, 2023, 44(5): 171-181. |
BAO W L, JIA H, XUE X P, et al. Influence of ‘windows’ structure on inflation process of ringsail parachute[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 171-181 (in Chinese). | |
23 | 王海涛, 秦子增. 基于遗传算法的大型降落伞气动力参数辨识[J]. 国防科技大学学报, 2010, 32(1): 28-33. |
WANG H T, QIN Z Z. Aerodynamic parameter estimation of large parachute based on genetic algorithm[J]. Journal of National University of Defense Technology, 2010, 32(1): 28-33 (in Chinese). | |
24 | SUNDBERG W D, MCBRIDE D D, GWINN K W. Parachute system design, analysis and simulation tool[C]?∥12th AIAA Aerodynamic Decelerator Systems Technical Conference. Reston: AIAA, 1993. |
25 | BALARAM J, AUSTIN R, BANERJEE P, et al. DSENDS-A high-fidelity dynamics and spacecraft simulator for entry, descent and surface landing[C]∥Proceedings, IEEE Aerospace Conference. Piscataway: IEEE Press, 2002: 7. |
26 | 罗亚中, 周建平. 航天任务分析与设计工业软件发展战略分析[J]. 力学与实践, 2024, 46(2): 241-249. |
LUO Y Z, ZHOU J P. Development strategic analysis for space mission analysis and design industrial software[J]. Mechanics in Engineering, 2024, 46(2): 241-249 (in Chinese). |
/
〈 |
|
〉 |