陶瓷基复合材料反应熔渗过程多场建模与仿真
收稿日期: 2024-05-22
修回日期: 2024-06-24
录用日期: 2024-07-03
网络出版日期: 2024-07-11
基金资助
国家重点研发计划(2022YFB3707700);陕西省航天复合材料重点实验室开放基金(ZX20220525)
Multi-field modeling and simulation of reactive infiltration process of ceramic matrix composites
Received date: 2024-05-22
Revised date: 2024-06-24
Accepted date: 2024-07-03
Online published: 2024-07-11
Supported by
National Key Research and Development Program of China(2022YFB3707700);Shaanxi Provincial Key Laboratory of Aerospace Composite Materials Open Fund(ZX20220525)
陶瓷基复合材料结合了碳材料与陶瓷材料的性能优势,成为航空航天领域重要的热结构材料。反应熔体渗透法是制备陶瓷基复合材料的主要工艺,其过程是高温熔体通过毛细作用进入多孔碳预制体中,与碳基体发生化学反应生成陶瓷相并嵌入孔隙中,从而实现高效致密化。但由于熔渗过程伴随着高温高活性、短时剧烈的热物理化学相互作用,使得实验观察、工艺参数调控充满挑战。基于反应熔渗工艺特性,考虑不同孔道之间的窜通特性,区别单孔结构与双孔结构的预制体微结构特征,构建更接近真实预制体孔隙结构的反应熔渗多物理场模型,模型预测温度值与实验值的误差在3%以内,同时在反应前期的熔渗深度预测值与实验值的误差在3%以内,整体预测精度远优于Washburn方程及其修正形式;讨论了孔隙结构模式对反应熔渗过程温度分布、反应速率分布的影响,发现双孔结构模式更有利于反应性熔体的渗入。提供了一种多孔碳介质内反应性熔体渗透过程的多物理场耦合方法,为陶瓷基复合材料反应熔渗工艺优化提供了理论依据。
师艳 , 刘晗 , 赵彤彤 , 代吉祥 , 沙建军 . 陶瓷基复合材料反应熔渗过程多场建模与仿真[J]. 航空学报, 2025 , 46(3) : 430722 -430722 . DOI: 10.7527/S1000-6893.2024.30722
Ceramic matrix composites combine the performance advantages of carbon materials and ceramic materials, making them an important thermal structural material in the aerospace field. The reactive melt permeation method is the main process for the preparation of ceramic matrix composites, in which the high-temperature melt enters the porous carbon preform through capillary action, and the chemical reaction with the carbon matrix is formed into the ceramic phase and embedded in the pores, so as to achieve efficient densification. However, due to the high temperature, high activity and short-term intense thermophysicochemical interactions in the infiltration process, it is challenging to observe the experiment and control the process parameters. Based on the characteristics of the reactive infiltration process, we consider the channeling characteristics between different pores, and distinguishes the microstructure characteristics of the precast with single-pore model and two-pores model. A multiphysics model of reactive infiltration is constructed that is closer to the pore structure of the real preform. The model predicts temperature values with an error margin less than 3% compared to experimental values, and the error between the predicted value and the experimental value in the early stage of the reaction within 3%. Overall, the prediction accuracy is far better than that of the Washburn equation and its modified form. Finally, the influence of the pore structure mode on the temperature distribution and reaction rate distribution of the reactive infiltration process is discussed, and it is found that the two-pores structure mode is more conducive to the infiltration of reactive melts. This study provides a multiphysics coupling method for the permeation process of reactive melt in porous carbon media, which provides a theoretical basis for the optimization of the reactive infiltration process of ceramic matrix composites.
1 | 章令晖, 陈萍. 复合材料在空间遥感器中的应用进展及关键问题[J]. 航空学报, 2015, 36(5): 1385-1400. |
ZHANG L H, CHEN P. Application progress of composites in space remote sensor and its key problems[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1385-1400 (in Chinese). | |
2 | YE Z Y, WANG Y L, XIONG X, et al. Effects of preform structure on microstructure and mechanical properties of long/short fiber-coupled C/C-SiC composites[J]. International Journal of Applied Ceramic Technology, 2024, 21(3): 1812-1828. |
3 | LI T, ZHANG Y L, LI J C, et al. Improved mechanical strength and oxidation resistance of SiC/SiC-MoSi2-ZrB2 coated C/C composites by a novel strategy[J]. Corrosion Science, 2022, 205: 110419. |
4 | GUO G D, YE F, CHENG L F, et al. A novel porous carbon synthesized to serve in the preparation of highly dense and high-strength SiC/SiC by reactive melt infiltration[J]. Composites Part A: Applied Science and Manufacturing, 2024, 176: 107839. |
5 | KOU S J, MAO Y H, MA J C, et al. Microstructure evolution and properties of Hf/Zr-based UHTCs modified C/C composites prepared by reactive melt infiltration method[J]. Journal of the European Ceramic Society, 2024, 44(6): 3610-3621. |
6 | XU J J, SUN W, XIONG X, et al. Outstanding mechanical and ablation resistance of C/C-ZrC-W composites prepared via slurry impregnation and reactive melt infiltration at 1 500 ℃[J]. Journal of Alloys and Compounds, 2024, 976: 173137. |
7 | PENG Y Q, LI Z W, LI A J, et al. Mechanical and tribological properties of C/C-SiC ceramic composites with different preforms[J]. Science and Engineering of Composite Materials, 2023, 30(1): 20220205. |
8 | BEST J, FREUDENBERG W, LANGHOF N, et al. Processing-microstructure correlations in material extrusion additive manufacturing of carbon fiber reinforced ceramic matrix composites[J]. Additive Manufacturing, 2024, 79: 103888. |
9 | FU Y, CHEN M R, XIAO P, et al. Influence of graphitization treatment on microstructure and flexural strength of C/C-ZrC-SiC composites fabricated via reactive melt infiltration[J]. Ceramics International, 2023, 49(18): 29391-29399. |
10 | YE Z Y, WANG Y L, WEN Q B, et al. Effects of density and heat treatment of C/C preforms on microstructure and mechanical properties of C/C-SiC composites[J]. International Journal of Applied Ceramic Technology, 2023, 20(1): 112-124. |
11 | ZHANG N L, HOU B Q, ZHI Q, et al. Performance enhancement in RMI-fabricated SiC-Ti3SiC2 composites via microstructure optimization[J]. Journal of the European Ceramic Society, 2024, 44(5): 2903-2915. |
12 | VARELA-FERIA F M, RAMíREZ-RICO J, DE ARELLANO-LóPEZ A R, et al. Reaction-formation mechanisms and microstructure evolution of biomorphic SiC[J]. Journal of Materials Science, 2008, 43(3): 933-941. |
13 | ZHANG K Y, ZHAO R D, YANG Y Q, et al. Capillary infiltration of liquid silicon in carbon nanotubes: a molecular dynamics simulation[J]. Journal of Materials Science & Technology, 2023, 144: 219-223. |
14 | NAIKADE M, ORTONA A, GRAULE T, et al. Liquid metal infiltration of silicon based alloys into porous carbonaceous materials. Part I: Modelling of channel filling and reaction phase formation[J]. Journal of the European Ceramic Society, 2022, 42(5): 1971-1983. |
15 | SHAHZAD S, IQBAL K, UDDIN Z. Theoretical study of reactive melt infiltration to fabricate Co-Si/C composites[J]. Chinese Physics B, 2021, 30(11): 116102. |
16 | PARK C H, LEBEL A, SAOUAB A, et al. Modeling and simulation of voids and saturation in liquid composite molding processes[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(6): 658-668. |
17 | YANG B, TANG Q, WANG S L, et al. Three-dimensional numerical simulation of the filling stage in resin infusion process[J]. Journal of Composite Materials, 2016, 50(29): 4171-4186. |
18 | GERN F H. Interaction between capillary flow and macroscopic silicon concentration in liquid siliconized carbon/carbon[J]. Ceramic Transactions, 1995, 58: 149-154. |
19 | EINSET E O. Analysis of reactive melt infiltration in the processing of ceramics and ceramic composites[J]. Chemical Engineering Science, 1998, 53(5): 1027-1039. |
20 | CROMPTON J S, K K C, YUSHANOV S P. Simulation of manufacturing process of ceramic matrix composites [J]. Processing and Properties of Advanced Ceramics and Composites II, 2010, 220: 35-46. |
21 | GRUJICIC M, GALGALIKAR R, RAMASWAMI S, et al. Multi-physics modeling and simulations of reactive melt infiltration process used in fabrication of ceramic-matrix composites (CMCs)[J]. Multidiscipline Modeling in Materials and Structures, 2015, 11(1): 43-74. |
22 | LIU Z D, WANG Y L, XIONG X, et al. Structural optimization and air-plasma ablation behaviors of C/C-SiC-(Zr x Hf1- x )C composites prepared by reactive melt infiltration method[J]. Corrosion, 2023, 222: 111408. |
23 | ZHOU Y B, SHA W H, LIU Y Y, et al. Influence of carbon source on microstructural and mechanical properties of high-performance reaction-bonded silicon carbide[J]. Materials, 2022, 15(15): 5250. |
24 | ZHANG J M, CHEN X W, LIAO C J, et al. Optimizing microstructure and properties of SiCf/SiC composites prepared by reactive melt infiltration[J]. Journal of Inorganic Materials, 2021, 36(10): 1103. |
25 | CHEN X W, NI D W, KAN Y M, et al. Reaction mechanism and microstructure development of ZrSi2 melt-infiltrated Cf/SiC-ZrC-ZrB2 composites: The influence of preform pore structures[J]. Journal of Materiomics, 2018, 4(3): 266-275. |
26 | MA Y Z, YIN X W, FAN X M, et al. Near-net-shape fabrication of Ti3SiC2-based ceramics by three-dimensional printing[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 71-80. |
27 | SANGSUWAN P, TEWARI S N, GATICA J E, et al. Reactive infiltration of silicon melt through microporous amorphous carbon preforms[J]. Metallurgical and Materials Transactions B, 1999, 30(5): 933-944. |
28 | SEIGNEUR N, MAYER K U, STEEFEL C I. Reactive transport in evolving porous media[J]. Reviews in Mineralogy and Geochemistry, 2019, 85(1): 197-238. |
29 | HEINZE T, HAMIDI S. Heat transfer and parameterization in local thermal non-equilibrium for dual porosity continua[J]. Applied Thermal Engineering, 2017, 114: 645-652. |
30 | BARENBLATT G I, ZHELTOV I P, KOCHINA I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata][J]. Journal of Applied Mathematics and Mechanics, 1960, 24(5): 1286-1303. |
31 | GERKE H H, VAN GENUCHTEN M T. Evaluation of a first-order water transfer term for variably saturated dual-porosity flow models[J]. Water Resources Research, 1993, 29(4): 1225-1238. |
32 | PAMPUCH R, WALASEK E, BIALOSKóRSKI J. Reaction mechanism in carbon-liquid silicon systems at elevated temperatures[J]. Ceramics International, 1986, 12(2): 99-106. |
33 | HOFBAUER P J, RAETHER F, R?DLEIN E. Finite element modeling of reactive liquid silicon infiltration[J]. Journal of the European Ceramic Society, 2020, 40(2): 251-258. |
34 | 王继平, 金志浩, 钱军民, 等. 反应熔渗法制备C/C-SiC复合材料及其反应机理和动力学的研究进展[J]. 硅酸盐学报, 2005, 33(9): 1120-1126. |
WANG J P, JIN Z H, QIAN J M, et al. Research progress on mechanism and kinetics of C/C-SiC composites prepared by reactive melt infiltration[J]. Journal of the Chinese Ceramic Society, 2005, 33(9): 1120-1126 (in Chinese). | |
35 | TONG Y G, BAI S X, LIANG X B, et al. Reactive melt infiltration fabrication of C/C-SiC composite: Wetting and infiltration[J]. Ceramics International, 2016, 42(15): 17174-17178. |
36 | EINSET E O. Capillary infiltration rates into porous media with applications to silcomp processing[J]. Journal of the American Ceramic Society, 1996, 79(2): 333-338. |
37 | CAI J C, JIN T X, KOU J S, et al. Lucas-washburn equation-based modeling of capillary-driven flow in porous systems[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(5): 1623-1636. |
38 | KUMAR S, KUMAR A, DEVI R, et al. Capillary infiltration studies of liquids into 3D-stitched C-C preforms[J]. Journal of the European Ceramic Society, 2009, 29(12): 2651-2657. |
39 | PONS A. Simulation numérique de la montée capillaire en espace confiné, en vue de l’application à des procédés d’élaboration de matériaux composites par imprégnation non-réactive ou réactive[D]. Bordeaux: Université de Bordeaux, 2017. |
40 | CHENG P, HSU C T. Heat conduction[M]∥Transport Phenomena in Porous Media. Amsterdam: Elsevier, 1998: 57-76. |
41 | ORTIZ M, MOLINARI A. Microstructural thermal stresses in ceramic materials[J]. Journal of the Mechanics and Physics of Solids, 1988, 36(4): 385-400. |
/
〈 |
|
〉 |