基于碳排放的航路交叉点通行能力确定方法
收稿日期: 2024-05-17
修回日期: 2024-06-16
录用日期: 2024-07-01
网络出版日期: 2024-07-08
基金资助
民航安全能力建设资金项目([2022]125号);南京航空航天大学科研与实践创新计划资助项目(xcxjh20230707)
A method for determining capacity of air routes intersection based on carbon emissions
Received date: 2024-05-17
Revised date: 2024-06-16
Accepted date: 2024-07-01
Online published: 2024-07-08
Supported by
Civil Aviation Safety Capacity Building Project ([2022]No.125);Nanjing University of Aeronautics and Astronautics Research and Practice Innovation Program Funded Project(xcxjh20230707)
航路网络中的繁忙交叉点流量过大会导致航空器偏离最佳飞行高度,增加二氧化碳、氮氧化物、二氧化硫、一氧化碳等污染物的排放。本文从燃油消耗和碳排放的视角出发,提出一种航路交叉点通行能力的确定方法:基于历史飞行轨迹数据,挖掘实际飞行高度与最佳飞行高度差值与交叉点流量和度之间的关系;采用飞行轨迹、航空器机型、发动机类型和大气环境等数据,建立了航空器燃油计算模型;提出了根据碳排放与航路交叉点特征的非线性回归方程一阶导数极值确定航路交叉点小时和日通行能力的方法。在航路网络规划、空中交通流量管理等优化阶段,采用新的航路交叉点通行能力标准控制航路交叉点的飞行流量不大于通行能力,航空器平均二氧化碳额外排放量将会减少1.68%~8.27%,这对航空运输业节能减排具有重要意义。
隋东 , 崔志鹏 . 基于碳排放的航路交叉点通行能力确定方法[J]. 航空学报, 2024 , 45(S1) : 730699 -730699 . DOI: 10.7527/S1000-6893.2024.30699
Excessive traffic at busy intersections of air routes in the air route network can cause aircraft to deviate from the optimal flight altitude and increase emissions of pollutants such as carbon dioxide, nitrogen oxides, sulfur dioxide and carbon monoxide. From the perspective of fuel consumption and carbon emission, this paper proposes a method for determining the capacity of intersection of air routes. Based on the historical flight trajectory data, the relationship between the difference between the actual flight altitude and the optimal flight altitude and the flow and degree of intersection of air routes is mined. Based on the data of flight trajectory, aircraft type, engine type and atmospheric environment, a calculation model of aircraft fuel is established. A method is proposed to determine the hourly and daily capacity of air routes intersection based on the extreme value of the first derivative of the nonlinear regression equation of carbon emission and characteristics of air routes intersection. In the optimization stage of air route network planning and air traffic flow management, if the new capacity standard of air routes intersection is adopted to control that the flight flow at the air routes intersection is not greater than the traffic capacity, the average additional CO2 emissions of aircraft will be reduced by 1.68%–8.27%, which is of great significance for energy conservation and emission reduction in the air transport industry.
1 | ZHOU W J, WANG T, YU Y D, et al. Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030[J]. Applied Energy, 2016, 175: 100-108. |
2 | Transport Action Group AIR. Aviation: Benefits beyond borders[R]. ATAG, 2020. |
3 | LIU J, TIAN J Y, LYU W J, et al. The impact of COVID-19 on reducing carbon emissions: From the angle of international student mobility[J]. Applied Energy, 2022, 317: 119136. |
4 | ICAO Resolution A38-18[EB/OL]. [2014-09-09]. . |
5 | ICAO. Long-term traffic forecast: Passenger and cargo[R]. Chicago: ICAO, 2019. |
6 | BARCZAK A, DEMBI?SKA I, ROZMUS D, et al. The impact of COVID-19 pandemic on air transport passenger markets-implications for selected EU airports based on time series models analysis[J]. Sustainability, 2022, 14(7): 4345. |
7 | SEKINE K, TATSUKAWA T, ITOH E, et al. Multi-objective takeoff time optimization using cellular automaton-based simulator[J]. IEEE Access, 2021, 9: 79461-79476. |
8 | BRUECKNER J K, ABREU C. Airline fuel usage and carbon emissions: Determining factors[J]. Journal of Air Transport Management, 2017, 62: 10-17. |
9 | TURGUT E T, CAVCAR M, USANMAZ O, et al. Fuel flow analysis for the cruise phase of commercial aircraft on domestic routes[J]. Aerospace Science and Technology, 2014, 37: 1-9. |
10 | YIN S W, HAN K, OCHIENG W Y, et al. Joint apron-runway assignment for airport surface operations[J]. Transportation Research Part B: Methodological, 2022, 156: 76-100. |
11 | 王超, 任云鸿. 面向节油减排的平行多跑道混合运行机场停机位分配模型[J]. 交通信息与安全, 2021, 39(5): 144-152. |
WANG C, REN Y H. A model of gate allocation for parallel multi-runway hybrid operation from the perspective of fuel-saving and carbon emission reduction[J]. Journal of Transport Information and Safety, 2021, 39(5): 144-152 (in Chinese). | |
12 | 李汝宁, 冯兴. 基于改进遗传算法的最小油耗机场飞行区布局优化[J]. 重庆交通大学学报(自然科学版), 2022, 41(12): 48-55. |
LI R N, FENG X. Flight area layout optimization of airfield with minimum fuel consumption based on improved genetic algorithm[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(12): 48-55 (in Chinese). | |
13 | 江波, 周云帆, 李诚龙, 等. 控制污染物排放的支线机场跑滑结构优化仿真[J]. 系统仿真学报, 2020, 32(3): 501-508. |
JIANG B, ZHOU Y F, LI C L, et al. Optimization simulation of Feeder airport runway structure for pollutant discharge control[J]. Journal of System Simulation, 2020, 32(3): 501-508 (in Chinese). | |
14 | 谢华, 黎子弘, 杨磊, 等. 容量受限下城市对航班四维航迹优化[J]. 航空学报, 2022, 43(8): 325581. |
XIE H, LI Z H, YANG L, et al. Optimization of four-dimensional trajectory of city pair with limited capacity[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 325581 (in Chinese). | |
15 | PONS-PRATS J, BUGEDA G, ZARATE F, et al. Applying multi-objective robust design optimization procedure to the route planning of a commercial aircraft[C]∥European Congress on Computational Methods in Applied Sciences and Engineering. Cham: Springer, 2018: 147-167. |
16 | 戴福青, 庞笔照, 赵元棣. 带偏好的交叉航路角度优化模型[J]. 西南交通大学学报, 2019, 54(1): 180-188. |
DAI F Q, PANG B Z, ZHAO Y D. Air route crossing angles optimization model with different preferences[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 180-188 (in Chinese). | |
17 | GERDES I, TEMME A, SCHULTZ M. Dynamic airspace sectorisation for flight-centric operations[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 460-480. |
18 | 韩瑞玲. 基于空域资源时空优化配置的航空碳减排研究[J]. 地球科学进展, 2023, 38(3): 309-319. |
HAN R L. Research on aviation carbon emission reduction based on optimal spatial and temporal allocation of airspace resources[J]. Advances in Earth Science, 2023, 38(3): 309-319 (in Chinese). | |
19 | GATSINZI D, SAEZ NIETO F J, MADANI I. Development of a new method for ATFCM based on trajectory-based operations[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(1): 261-284. |
20 | SHI H F, ZHENG Y E, ZHANG X Y, et al. Evaluation of residual airspace resources based on civil aviation operation big data[C]∥ 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT). Piscataway: IEEE Press, 2021: 194-198. |
21 | 沈笑云, 王添莹, 张思远, 等. 航路点通行能力计算的置信区间方法[J]. 信号处理, 2022, 38(8): 1684-1692. |
SHEN X Y, WANG T Y, ZHANG S Y, et al. Confidence interval method for calculating the capacity of waypoints[J]. Journal of Signal Processing, 2022, 38(8): 1684-1692 (in Chinese). | |
22 | JANI? M, TO?I? V. En route sector capacity model[J]. Transportation Science, 1991, 25(4): 299-307. |
23 | SIDDIQEE W. A mathematical model for predicting the number of potential conflict situations at intersecting air routes[J]. Transportation Science, 1973, 7(2): 158-167. |
24 | SCHMIDT D K. Stochastic properties of conflict frequency at multiple connected air route intersections[J]. Journal of Aircraft, 1978, 15(10): 682-685. |
25 | HUANG S M, FERON E, REED G, et al. Compact configuration of aircraft flows at intersections[C]∥ IEEE Transactions on Intelligent Transportation Systems. Piscataway: IEEE Press, 2014: 771-783. |
26 | WANG S J, CAO X, LI H Y, et al. Air route network optimization in fragmented airspace based on cellular automata[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1184-1195. |
27 | 王莉莉, 张潇潇. 航路交叉点容量及航路容量模型研究[J]. 中国民航大学学报, 2015, 33(5): 7-10. |
WANG L L, ZHANG X X. Research on route crossing point capacity and route capacity models[J]. Journal of Civil Aviation University of China, 2015, 33(5): 7-10 (in Chinese). | |
28 | 武丁杰, 许凌宇, 朱莉, 等. 航路交叉点动态规划研究[J]. 科技和产业, 2023, 23(14): 209-214. |
WU D J, XU L Y, ZHU L, et al. Research on dynamic programming of airway intersections[J]. Science Technology and Industry, 2023, 23(14): 209-214 (in Chinese). | |
29 | SENZIG D A, FLEMING G G, IOVINELLI R J. Modeling of terminal-area airplane fuel consumption[J]. Journal of Aircraft, 2009, 46(4): 1089-1093. |
30 | BURZLAFF M. Aircraft fuel consumption-estimation and visualization[D]. Hamburg: Hamburg University of Applied Science, 2017: 12-21 (in German). |
31 | PAGONI I, PSARAKI-KALOUPTSIDI V. Calculation of aircraft fuel consumption and CO2 emissions based on path profile estimation by clustering and registration[J]. Transportation Research Part D: Transport and Environment, 2017, 54: 172-190. |
32 | DALMAU R, PRATS X. Fuel and time savings by flying continuous cruise climbs[J]. Transportation Research Part D: Transport and Environment, 2015, 35: 62-71. |
33 | KAISER M, SCHULTZ M, FRICKE H. Enhanced jet performance model for high precision 4D flight path prediction[C]∥Proceedings of the 1st International Conference on Application and Theory of Automation in Command and Control Systems, 2011: 33-40. |
34 | SCHILLING G D. Modeling aircraft fuel consumption with a neural network[D]. Blacksburg: Virginia Polytechnic Institute and State University, 1997: 42-48. |
35 | HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049. |
36 | WU C L, SONG X Y, WANG T, et al. Core dimensions of the construction safety climate for a standardized safety-climate measurement[J]. Journal of Construction Engineering and Management, 2015, 141(8): 1-12. |
/
〈 |
|
〉 |