基于双向密度函数的空天轴对称结构拓扑优化
收稿日期: 2024-04-01
修回日期: 2024-04-23
录用日期: 2024-05-20
网络出版日期: 2024-07-05
基金资助
辽宁省人工智能领域科技重大专项(2023020702-JH26/101);国家重点研发计划(2022YFB3404700)
Topology optimization of aerospace axisymmetric structures based on bidirectional density function
Received date: 2024-04-01
Revised date: 2024-04-23
Accepted date: 2024-05-20
Online published: 2024-07-05
Supported by
Major Science and Technology Projects in the Field of Artificial Intelligence of Liaoning Province(2023020702-JH26/101);National Key Research and Development Program of China(2022YFB3404700)
通过拓扑优化得到的结构优化构型往往因存在内部封闭孔洞而导致难以满足工艺约束。为实现对拓扑优化结果的特定形状控制,面向空天装备中的轴对称结构,基于变密度法提出了一种双向密度分布函数。首先,通过将设计变量由每个单元的伪密度转化为双向密度分布函数的控制参数,拓扑优化过程中结构材料将沿特定方向变化,最终的伪密度场分布也将随着双向密度分布函数具体表达形式的不同而改变。然后,使用一种线性加权过滤方法对设计变量进行过滤以获得更加光滑的材料边界。进而,针对结构质量和最大von Mises应力响应,分别开展了二者对设计变量的敏度分析,并搭建了在质量约束下,结构最大von Mises应力最小化的拓扑优化框架。同时,为避免拓扑优化过早陷入局部最优解,在迭代过程中针对灰度单元控制参数和应力P-范数系数采用延拓更新的方式。最后,使用典型空天轴对称结构航空发动机轮盘开展算例验证,在满足质量约束的前提下,材料分布在优化过程中朝着应力最小化的方向逐步演化,得到的拓扑优化构型材料/孔洞界面清晰、应力分布均匀、材料利用率高,证明了所提方法的有效性。
时永鑫 , 田阔 , 王博 . 基于双向密度函数的空天轴对称结构拓扑优化[J]. 航空学报, 2024 , 45(S1) : 730585 -730585 . DOI: 10.7527/S1000-6893.2024.30585
The structure optimization configuration obtained by topology optimization is often difficult to meet the manufacturing constraints due to the existence of internal closed holes. To control the specific shape of topology optimization results, a bidirectional density distribution function is proposed based on variable density method for axisymmetric structures in aerospace equipment. By converting the design variables from the pseudo density of each element to the control parameters of the bidirectional density distribution function, the structural materials will change along a specific direction in the process of topology optimization. The final pseudo density field distribution will also change with the specific expression of bidirectional density distribution function. Then, a linear weighted filtering method is used to filter the design variables to obtain a smoother material boundary. Furthermore, the sensitivity analysis of the structural mass and the maximum von Mises stress response to the design variables is carried out respectively, and the topology optimization framework of minimizing the maximum von Mises stress of the structure under the mass constraint is established. Meanwhile, to avoid the topology optimization from falling into the local optimal solution too early, the extension updating method is adopted for the grey element control parameters and the stress P-norm coefficient in the iterative process. Finally, typical aero-engine disks with aerospace axisymmetric structure are used to carry out the example verification. Under the premise of meeting the quality constraints, the material distribution gradually evolves towards the direction of stress minimization in the optimization process. The obtained topology optimization configuration has clear solid space interface, uniform stress distribution and high material utilization rate, demonstrating the effectiveness of the proposed method.
1 | 向有志, 张垄元, 王磊, 等. 壁面压升可控的高超轴对称进气道优化设计[J]. 航空动力学报, 2011, 26(10): 2193-2199. |
XIANG Y Z, ZHANG L Y, WANG L, et al. Optimization design of hypersonic axisymmetric inlet with controllable law of wall pressure rise[J]. Journal of Aerospace Power, 2011, 26(10): 2193-2199 (in Chinese). | |
2 | NGIM D B, LIU J S, SOAR R C. Design optimization for manufacturability of axisymmetric continuum structures using metamorphic development[J]. International Journal of Solids and Structures, 2007, 44(2): 685-704. |
3 | 孙士平, 胡坚堂, 张卫红. 基于超椭圆方程和序列响应面法的回转壳开孔形状优化[J]. 航空学报, 2015, 36(11): 3595-3607. |
SUN S P, HU J T, ZHANG W H. Shape optimization of openings on rotation shells based on super-elliptic function and sequential response surface method?[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3595-3607 (in Chinese). | |
4 | HUANG L, LI H Q, ZHENG K W, et al. Shape optimization method for axisymmetric disks based on mesh deformation and smoothing approaches[J]. Mechanics of Advanced Materials and Structures, 2023, 30(12): 2532-2555. |
5 | GOMES R, HENRIQUES J, GATO L, et al. Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion[J]. Renewable Energy, 2012, 44: 328-339. |
6 | 张坤, 陆山. 基于UG、 Workbench平台航空发动机多盘转子结构自动优化方法[J]. 航空动力学报, 2018, 33(5): 1158-1164. |
ZHANG K, LU S. Automatic optimization method for multi-disk rotor structure of aero-engine based on UG and Workbench platform[J]. Journal of Aerospace Power, 2018, 33(5): 1158-1164 (in Chinese). | |
7 | 国玉林, 杨丰宇, 姚剑飞, 等. 基于多重优化的多级盘转子虚拟装配平衡方法[J]. 航空学报, 2024, 45(4): 628323. |
GUO Y L, YANG F Y, YAO J F, et al. Multiple optimization based virtual assembly balance of multi-disk rotors considering multi-speed[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628323 (in Chinese). | |
8 | 脱伟, 熊劲松, 侯安平, 等. 遗传算法在多级压气机气动优化设计中的应用[J]. 航空动力学报, 2007, 22(2): 305-309. |
TUO W, XIONG J S, HOU A P, et al. Application of genetic algorithm to multi-stage compressor aerodynamic optimization design[J]. Journal of Aerospace Power, 2007, 22(2): 305-309 (in Chinese). | |
9 | WANG B, WANG G M, HUANG L, et al. On the preliminary shape design of axisymmetric twin-web turbine discs considering the burst speed constraint[J]. Engineering Optimization, 2022, 54(12): 2071-2086. |
10 | WANG B, WANG G M, SHI Y X, et al. Stress-constrained thermo-elastic topology optimization of axisymmetric disks considering temperature-dependent material properties?[J]. Mechanics of Advanced Materials and Structures, 2022, 29(28): 7459-7475. |
11 | STOJANOV D, WU X H, FALZON B G, et al. Axisymmetric structural optimization design and void control for selective laser melting[J]. Structural and Multidisciplinary Optimization, 2017, 56(5): 1027-1043. |
12 | BENDS?E M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method?[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
13 | SIGMUND O, MAUTE K. Topology optimization approaches: A comparative review[J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055. |
14 | BENDS?E M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1(4): 193-202. |
15 | ZHOU M, FLEURY R, SHYY Y K, et al. Progress in topology optimization with manufacturing constraints[C]∥ Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002. |
16 | LU J N, CHEN Y H. Manufacturable mechanical part design with constrained topology optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(10): 1727-1735. |
17 | LEIVA J, WATSON B, KOSAKA I. An analytical directional growth topology parameterization to enforce manufacturing requirements[C]∥ Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004. |
18 | LEIVA J, WATSON B, KOSAKA I. An analyticall Bi-directional growth parameterization to obtain optimal castable topology designs[C]∥ Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2004. |
19 | GERSBORG A R, ANDREASEN C S. An explicit parameterization for casting constraints in gradient driven topology optimization[J]. Structural and Multidisciplinary Optimization, 2011, 44(6): 875-881. |
20 | ZHU J H, GU X J, ZHANG W H, et al. Structural design of aircraft skin stretch-forming die using topology optimization?[J]. Journal of Computational and Applied Mathematics, 2013, 246: 278-288. |
21 | LIU S T, LI Q H, CHEN W J, et al. H-DGTP—A Heaviside-function based directional growth topology parameterization for design optimization of stiffener layout and height of thin-walled structures[J]. Structural and Multidisciplinary Optimization, 2015, 52(5): 903-913. |
22 | ZHOU L, ZHANG W H. Topology optimization method with elimination of enclosed voids[J]. Structural and Multidisciplinary Optimization, 2019, 60(1): 117-136. |
23 | LEE H Y, ZHU M, GUEST J K. Topology optimization considering multi-axis machining constraints using projection methods?[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114464. |
24 | FENG S Q, ZHANG W H, MENG L, et al. Stiffener layout optimization of shell structures with B-spline parameterization method?[J]. Structural and Multidisciplinary Optimization, 2021, 63(6): 2637-2651. |
25 | QIAN X P. Topology optimization in B-spline space[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 265: 15-35. |
26 | ZHANG W H, ZHAO L Y, GAO T, et al. Topology optimization with closed B-splines and Boolean operations[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 652-670. |
27 | LI Q H, CHEN W J, LIU S T, et al. Topology optimization design of cast parts based on virtual temperature method[J]. Computer-Aided Design, 2018, 94: 28-40. |
28 | LI Q H, CHEN W J, LIU S T, et al. Structural topology optimization considering connectivity constraint[J]. Structural and Multidisciplinary Optimization, 2016, 54(4): 971-984. |
29 | WANG B, WANG G M, TIAN K, et al. A preliminary design method for axisymmetric turbomachinery disks based on topology optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(7): 3313-3322. |
30 | SIGMUND O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization, 2007, 33(4): 401-424. |
31 | SIGMUND O, PETERSSON J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural Optimization, 1998, 16(1): 68-75. |
32 | BRUGGI M. On an alternative approach to stress constraints relaxation in topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36(2): 125-141. |
33 | YANG D X, LIU H L, ZHANG W S, et al. Stress-constrained topology optimization based on maximum stress measures[J]. Computers & Structures, 2018, 198: 23-39. |
/
〈 |
|
〉 |