基于非线性动态逆的主动电驱式对接机构位姿跟踪方法
收稿日期: 2024-05-20
修回日期: 2024-06-03
录用日期: 2024-06-19
网络出版日期: 2024-07-01
基金资助
国家自然科学基金委与中国航天科技集团公司联合基金(U21B6002);上海市“科技创新行动计划”启明星扬帆专项(23YF1411200);中国博士后科学基金(2022M722044)
A nonlinear dynamic inversion based position and attitude tracking control method for active motor driven docking mechanism
Received date: 2024-05-20
Revised date: 2024-06-03
Accepted date: 2024-06-19
Online published: 2024-07-01
Supported by
Joint Funding Project between the National Natural Science Foundation of China and China Aerospace Science and Technology Corporation(U21B6002);Shanghai “Science and Technology Innovation Action Plan” Rising Star Sailing Special Funding Project of China(23YF1411200);China Postdoctoral Science Foundation(2022M722044)
已有在轨服役的空间飞行器对接机构,由于其被动机械式的设计特点,多数只能针对一组固定吨位的对接任务进行设计研制。而载人月球探测任务和空间站对接任务,因其任务复杂,对接机构需要具备多任务、多吨位、多工况的对接适应能力。该任务规划中,含有各类吨位主被动飞行器的对接组合需求。经过精心设计的具有弹簧阻尼、差动组合系统的被动机械式对接机构无法同时兼顾完成大对小、小对大吨位的空间飞行器对接任务,并且传统的增益规划类跟踪控制律也无法满足快瞬态响应、高精度控制等动力学控制需求。已有的运动学跟踪控制方法大多需要经验调参过程,往往步骤繁琐且易造成系统失稳。在此任务背景下,对研制一类具有精确动力学控制性能的主动电驱式对接机构提出了迫切需求。设计了一种基于非线性动态逆方法的主动电驱式对接机构位姿跟踪方法,并进行了仿真验证。多体动力学与控制系统联合仿真试验结果表明,所设计的非线性控制律能够完成既定控制目标,相较于传统方法能够进行精确动力学控制,响应迅速、精度更高且无需重复调参,为后续工程研制阶段提供了参考。
刘璟龙 , 时军委 , 胡雪平 , 许晨光 , 张冰肖 , 邱华勇 , 马晓龙 . 基于非线性动态逆的主动电驱式对接机构位姿跟踪方法[J]. 航空学报, 2024 , 45(S1) : 730707 -730707 . DOI: 10.7527/S1000-6893.2024.30707
Due to their passive mechanical design characteristics, most space vehicle docking mechanisms that have already been in orbit can only be designed and developed for a fixed tonnage docking task. The manned lunar exploration mission and space station docking mission, due to their complexity, require the docking mechanism to have the ability to adapt to multiple tasks, tonnage, and working conditions. In the planning of these tasks, there is a requirement for the docking combination of various tonnage active and passive aircraft. The carefully designed passive mechanical docking mechanism with spring damping and differential combination system cannot simultaneously complete the docking tasks of large-to-small and small-to-large tonnage space vehicles, and traditional gain planning tracking control laws cannot meet the dynamic control requirements of fast transient response and high-precision control. Most existing kinematic tracking control methods require an empirical parameter tuning process, and are often cumbersome and prone to system instability. In the context of these missions, there is an urgent need to develop a type of active motor driven docking mechanism with precise dynamic control performance. This article proposes a position and attitude tracking control method for an active motor driven docking mechanism based on the nonlinear dynamic inversion method, and conducts simulation verification. The joint simulation test results of multi-body dynamics and control systems show that the nonlinear control law designed in this paper can achieve the established control objectives. Compared with traditional methods, it can perform precise dynamic control with fast response, higher accuracy, and no need for repeated parameter tuning. This provides a reference for the subsequent engineering research and development stage.
1 | 张崇峰. 航天器对接机构[M]. 北京: 科学出版社, 2016. |
ZHANG C F. Spacecraft docking mechanism[M]. Beijing: Science Press, 2016 (in Chinese). | |
2 | 娄汉文, 曲广吉, 刘济生. 空间对接机构[M]. 北京:航空工业出版社, 1992. |
LOU H W, QU G J, LIU J S. Space Docking Mechanism[M]. Beijing: Aviation Industry Press, 1992 (in Chinese). | |
3 | MICHAEL H, CARLOS M, ANTONIO A, et al. Validation of space vehicle docking with the international berthing & docking mechanism and a kuka robot[C]?∥The 14th European Space Mechanisms & Tribology Symposium. Konstanz: European Space Technology Centre, 2011:1-8. |
4 | CHEN J, WEN X D, WANG H, et al. A genderless docking mechanism with passive locking and high rotation misalignment tolerance for modular space robots[C]?∥2022 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway: IEEE Press, 2022: 303-308. |
5 | XIE Z H, LIU G F, LI C L, et al. Research of the low impact space docking mechanism based on impedance control strategy[C]?∥2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA). Piscataway: IEEE Press, 2016: 1-6. |
6 | YU Y, XU Z B, LV Y Y, et al. Design and analysis of space docking mechanism for on-orbit assembly with application to space telescopes[C]?∥2018 IEEE International Conference on Mechatronics and Automation (ICMA). Piscataway: IEEE Press, 2018: 1867-1871. |
7 | ZHU H K, ZHANG Y W, YANG L P, et al. Study on the characteristics of a probe-drogue electromagnetic docking mechanism[C]?∥2020 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2020: 5512-5515. |
8 | DOHI R, HIGASHI Y. Integrated control and docking mechanism for docking-undocking drones in the air[C]?∥ TENCON 2022-2022 IEEE Region 10 Conference (TENCON). Piscataway: IEEE Press, 2022: 1-6. |
9 | HUANG B, ZHOU B L, PANG H S, et al. A reliable docking mechanism and close-range docking algorithm for modular reconfigurable robots[C]?∥2023 9th International Conference on Mechatronics and Robotics Engineering (ICMRE). Piscataway: IEEE Press, 2023: 78-83. |
10 | 沈涛, 张崇峰, 王卫军, 等. 基于抱爪式对接机构捕获缓冲系统动力学仿真研究[J]. 力学学报, 2020, 52(6): 1590-1598. |
SHEN T, ZHANG C F, WANG W J, et al. Dynamic simulation analysis of capture and buffer system based on claw-type docking mechanism[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1590-1598 (in Chinese). | |
11 | 陈传志, 汪捷, 陈金宝, 等. 弱撞击对接机构动力学特性建模[J]. 南京航空航天大学学报, 2021, 53(1): 35-43. |
CHEN C Z, WANG J, CHEN J B, et al. Dynamic property modeling of low impact docking mechanism[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(1): 35-43 (in Chinese). | |
12 | 陈传志, 汪捷, 陈金宝, 等. 空间弱撞击对接机构传递功率分析[J]. 机械与电子, 2020, 38(12): 3-8. |
CHEN C Z, WANG J, CHEN J B, et al. Power transfer analysis of low impact docking mechanism in space[J]. Machinery & Electronics, 2020, 38(12): 3-8 (in Chinese). | |
13 | 章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 1998: 157-176. |
ZHANG R W. Satellite orbit attitude dynamics and control[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1998: 157-176 (in Chinese). | |
14 | SNELL S A, ENNS D F, GARRARD W L Jr. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4): 976-984. |
15 | LANE S H, STENGEL R F. Flight Control Design using Nonlinear Inverse Dynamics[C]?∥1986 American Control Conference. Piscataway: IEEE Press, 1986: 587-596. |
16 | EVAIN H, ROGNANT M, ALAZARD D, et al. Nonlinear dynamic inversion for redundant systems using the EKF formalism[C]?∥2016 American Control Conference (ACC). Piscataway: IEEE Press, 2016: 348-353. |
17 | SMEUR E J J, DE CROON G C H E, CHU Q P. Gust disturbance alleviation with Incremental Nonlinear Dynamic Inversion[C]?∥2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2016: 5626-5631. |
18 | 韩吴汉. 飞翼飞行器的增量非线性动态逆控制研究[D]. 南京: 南京航空航天大学, 2020. |
HAN W H. Research on incremental nonlinear dynamic inverse control of flying wing aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
19 | 朱荣刚, 姜长生, 邹庆元, 等. 新一代歼击机超机动飞行的动态逆控制[J]. 航空学报, 2003, 24(3): 242-245. |
ZHU R G, JIANG C S, ZOU Q Y, et al. Study on dynamic inversion control and simulation of supermaneuverable flight of the new generation fighter[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 242-245 (in Chinese). |
/
〈 |
|
〉 |