柔性气动减速技术专栏

基于融合代理策略的超声速降落伞气动优化设计

  • 姜璐璐 ,
  • 潘鑫 ,
  • 蒋伟 ,
  • 冯瑞 ,
  • 陈刚
展开
  • 1.西安交通大学 航天航空学院,西安 710049
    2.机械结构强度与振动国家重点实验室,西安 710049
    3.陕西省先进飞行器服役环境与控制重点实验室,西安 710049 4.北京空间机电研究所,北京 100094
.E-mail: aachengang@xjtu.edu.cn

收稿日期: 2024-04-02

  修回日期: 2024-06-06

  录用日期: 2024-06-27

  网络出版日期: 2024-07-01

基金资助

国家自然科学基金(92371201);陕西省自然科学基金(2022JC-03)

Optimization shape design of capsule-supersonic parachute system based on fusion surrogate strategy

  • Lulu JIANG ,
  • Xin PAN ,
  • Wei JIANG ,
  • Rui FENG ,
  • Gang CHEN
Expand
  • 1.School of Aerospace Engineering,Xi’an Jiaotong University,Xi’an 710049,China
    2.State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an 710049,China
    3.Shannxi Key Laboratory for Environment and Control of Flight Vehicle,Xi’an 710049,China
    4.Beijing Institute of Space Mechanics and Electricity,Beijing 100094,China

Received date: 2024-04-02

  Revised date: 2024-06-06

  Accepted date: 2024-06-27

  Online published: 2024-07-01

Supported by

National Natural Science Foundation of China(92371201);Natural Science Foundation of Shaanxi Province(2022JC-03)

摘要

超声速降落伞作为提供气动阻力和稳定性的重要气动减速系统,其设计好坏直接影响着探测器着陆任务的成败。适应不同气动性能需求的降落伞结构参数通常是相互矛盾的,为了解决火星降落伞在外形设计时的结构参数矛盾,以及设计周期长、计算误差大的问题,本文提出了一种面向探测器-降落伞双体模型的融合代理优化策略。融合代理模型集成了插值型代理模型和回归型代理模型的优点,能够在相同样本的条件下具备更高的气动力系数预测精度。通过采用融合代理模型替代长耗时的计算流体力学(CFD)计算过程,能够缩短设计周期,提高设计效率。结合多目标遗传算法对探测器-盘缝带伞双体模型进行了优化设计,结果表明,采用融合代理优化策略能够平衡伞体的阻力性能及稳定性能,在满足结构及气动约束的前提下提升盘缝带伞的综合减速能力,具有良好的实用性和可行性。文章的研究结果可为未来新一代火星探测用超声速降落伞的设计研制提供一定的理论参考和技术储备。

本文引用格式

姜璐璐 , 潘鑫 , 蒋伟 , 冯瑞 , 陈刚 . 基于融合代理策略的超声速降落伞气动优化设计[J]. 航空学报, 2025 , 46(1) : 630471 -630471 . DOI: 10.7527/S1000-6893.2024.30471

Abstract

Supersonic parachutes, as crucial aerodynamic deceleration systems providing drag and stability, directly impact the success of lander missions. The structural parameters of parachutes that meet different aerodynamic performance requirements are often contradictory. To address the issues of structural parameter conflicts in the shape design of Mars parachutes, as well as the errors of lengthy design cycles and high calculation, this study proposes a fusion surrogate optimization strategy for the two-body model of the canopy-capsule system. The fusion surrogate model integrates the advantages of interpolation-based and regression-based surrogate models, and achieves higher prediction accuracy of aerodynamic coefficients under the same sample conditions. By employing the fusion surrogate model to replace the time-consuming Computational Fluid Dynamics (CFD) calculation process, the design cycle can be shortened, and design efficiency can be improved. The two-body model of the capsule- DGB parachute is optimized using a multi-objective genetic algorithm. The results show that the fusion surrogate optimization strategy can balance the drag and stability performance of the canopy, and enhance the overall deceleration capability of the disk-gap-band parachute under structural parameters and aerodynamic constraints, demonstrating good practicality and feasibility. The research findings can provide theoretical reference and technical reserves for the design and development of a new generation of supersonic parachutes for future Mars exploration missions.

参考文献

1 XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences2021125: 100728.
2 KNACKE T W. Parachute recovery systems design manual: AD-A247666[R]. California: Para Publishing, 1992.
3 Ewing E G, Bixby H W, Knacke T W. Recovery system design guide[M]. Washington, D.C.: Department of Defense, Department of the Air Force, Systems Command, Air Force Wright Aeronautical Laboratories, Air Force Flight Dynamics Laboratory, 1978.
4 Knacke T W. Technical-historical development of parachutes and their applications since World War I: AIAA-1986-2423[R]. Reston: AIAA, 1986.
5 COCKERLL D J, The aerodynamics of parachutes: AGARD-AG-295[R]. Paris: AGARD, 1987.
6 DENNIS D R. Recent advances in parachute technology[J]. The Aeronautical Journal198387(869): 333-342.
7 CRUZ J, LINGARD J. Aerodynamic decelerators for planetary exploration: Past, present, and future: AIAA-2006-6792[R]. Reston: AIAA, 2006.
8 王国辉, 牟宇, 张然, 等. 超声速降落伞工程应用的关键技术研究进展[J]. 宇航总体技术2022(2): 1-16.
  WANG G H, MOU Y, ZHANG R, et al. Recent progress in key technology of supersonic parachute application in engineering design[J]. Astronautical System Engineering Technology20226(2) :1-16. (in Chinese).
9 高树义, 戈嗣诚, 梁艳. 火星盘缝带伞跨声速风洞试验研究[J]. 中国空间科学技术201535(4): 69-75.
  GAO S Y, GE S C, LIANG Y. Research on transonic wind tunnel tests of Mars disk-gap-band parachutes[J]. Chinese Space Science and Technology201535(4): 69-75 (in Chinese).
10 徐欣, 贾贺, 陈雅倩, 等. 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报202243(12), 126289.
  XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta aeronauticaet astronautica sinica202243(12): 126289 (in Chinese).
11 荣伟, 陈旭. 火星探测用降落伞研制试验简介[J]. 航天返回与遥感200728(1): 12-17.
  RONG W, CHEN X. Resume of the tests about parachute development for Mars exploration mission?[J]. Spacecraft Recovery & Remote Sensing200728(1): 12-17 (in Chinese).
12 于莹潇, 田佳林. 火星探测器降落伞系统综述[J]. 航天返回与遥感200728(4): 12-16.
  YU Y X, TIAN J L. Mars explorer’s parachute system overview[J]. Spacecraft Recovery & Remote Sensing200728(4): 12-16 (in Chinese).
13 CRUZ J, MINECK R, KELLER D, et al. Wind tunnel testing of various disk-gap-band parachutes: AIAA-2003-2129[R]. Reston: AIAA, 2003.
14 WAY D, DESAI P, ENGELUND W, et al. Design and analysis of the drop test vehicle for the Mars exploration rover parachute structural tests: AIAA-2003-2128[R]. Reston: AIAA, 2003.
15 TAEGER Y, WITKOWSKI A. A summary of dynamic testing of the Mars exploration rover parachute decelerator system: AIAA-2003-2127[R]. Reston; AIAA, 2003.
16 WITKOWSKI A, KANDIS M, ADAMS D S. Mars science laboratory parachute system performance: AIAA-2013- 1277[R]. Reston; AIAA, 2013.
17 FALLON E, FALLON E. System design overview of the Mars Pathfinder parachute decelerator subsystem: AIAA-1997-1511[R]. Reston; AIAA, 1997.
18 MAYNARD J D, Aerodynamics characteristics of parachutes at Mach numbers from 1.6 to 3: NASA TN D-752[R]. Washington, D.C.: NASA, 1961.
19 BRAUN R D, MANNING R M. Mars exploration entry, descent and landing challenges[C]∥2006 IEEE Aerospace Conference. Piscataway: IEEE Press, 2006: 1-18.
20 REYNIER P. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects[J]. Progress in Aerospace Sciences201470: 1-27.
21 REICHENAU D E. Aerodynamic characteristics of disk-gap-band parachutes in the wake of viking entry forebodies at Mach numbers from 0.2 to 2.6:AEDC-TR-72-78[R]. Tennessee: Arnold Engineering Development Center, 1972.
22 POTVIN J, KAVANAUGH J, MCQUILLING M W. A second look at geometric porosity as revealed by computational fluid dynamics (CFD): AIAA-2013-1320[R]. Reston: AIAA, 2013
23 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报202344(7): 127335.
  LI C P, QIAN Z S, SUN X S. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing[J]. Acta Aeronauticaet Astronautica Sinica202344(7): 127335 (in Chinese).
24 刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报202344(4): 126664.
  LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronau-Ticaet Astronautica Sinica202344(4): 126664 (in Chinese).
25 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报202041(5): 623409.
  LI R Z, ZHANG Y F, CHEN H X. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings[J]. Acta Aeronautica et Astronautica Sinica202041(5): 623409 (in Chinese).
26 李权, 郭兆电, 雷武涛, 等. 基于工程环境的气动多目标优化设计平台研究[J]. 航空学报201637(1): 255-268.
  LI Q, GUO Z D, LEI W T, et al. Engineering environment-based multi-objective optimization platform for aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica201637(1): 255-268 (in Chinese).
27 SENGUPTA A, STELTZNER A, WITKOWSKI A, et al. An overview of the Mars science laboratory parachute decelerator system[C]∥2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-8.
28 XUE X P, KOYAMA H, NAKAMURA Y. Numerical simulation of supersonic aerodynamic interaction of a parachute system[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan201311: 33-42.
29 SHEN G H, XIA Y Q, SUN H R. A 6DOF mathematical model of parachute in Mars EDL[J]. Advances in Space Research201555(7): 1823-1831.
30 徐丽, 张开军. 基于HLLC Riemann求解器和重叠网格的三维可压缩粘性流场的计算[J]. 应用力学学报201532(6): 1025-1030.
  XU L, ZHANG K J. Calculation of three-dimensional compressible viscous flow field based on HLLC Riemann solver and overlapping grid[J]. Chinese Journal of Applied Mechanics201532(6): 1025-1030 (in Chinese).
31 JIANG L L, JIA H, XU X, et al. Numerical study on aerodynamic performance of Mars parachute models with geometric porosities[J]. Space: Science and Technology20222022: 9851982.
32 JIANG L L, JIA H, XU X, et al. Effect of different geometric porosities on aerodynamic characteristics of supersonic parachutes[J]. Space: Science & Technology20233: 0062.
33 BARNHARDT M, DRAYNA T, NOMPELIS I, et al. Detached eddy simulations of the MSL parachute at supersonic conditions: AIAA-2007-2529?[R]. Reston: AIAA, 2007.
34 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报201637(11): 3197-3225.
  HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3197-3225 (in Chinese).
35 MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics200042(1): 55-61.
36 张德虎, 高正红, 李焦赞, 等. 基于双层代理模型的无人机气动隐身综合设计[J]. 空气动力学学报201331(3): 394-400.
  ZHANG D H, GAO Z H, LI J Z, et al. Aerodynamic and stealth synthesis design optimization of UAV based on double-stage metamodel[J]. Acta Aerodynamica Sinica201331(3): 394-400 (in Chinese).
37 SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for Computer-based Engineering Design: survey and recommendations[J]. Engineering with Computers200117(2): 129-150.
38 VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks199910(5): 988-999.
39 韩欣珉, 徐浩军, 尚柏林. 基于支持向量机的轰炸机敏感性权衡优化[J]. 系统工程与电子技术201941(11): 2488-2495.
  HAN X M, XU H J, SHANG B L. Tradeoff optimization of bomber susceptibility based on support vector machines[J]. Systems Engineering and Electronics201941(11): 2488-2495 (in Chinese).
40 DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ?[J]. IEEE Transactions on Evolutionary Computation20026(2): 182-197.
文章导航

/