电子电气工程与控制

面向城市低空的多机型eVTOL安全间隔评估

  • 王兴隆 ,
  • 王友杰
展开
  • 中国民航大学 民航飞联网重点实验室,天津 300300
.E-mail: xinglong1979@163.com

收稿日期: 2024-04-25

  修回日期: 2024-06-04

  录用日期: 2024-06-18

  网络出版日期: 2024-06-20

基金资助

国家自然科学基金面上项目(62173332);国家自然科学基金重点项目(U2133207);天津多元基金项目(21JCYBJCO0700);校级研究生创新创业项目(2023YJSKC03007);天津市教育委员会自然科学重点项目(2020ZD01)

Safety interval evaluation for multi-aircraft eVTOL in urban low altitude

  • Xinglong WANG ,
  • Youjie WANG
Expand
  • Key Laboratory of Internet of Aircraft in Civil Aviation,Civil Aviation University of China,Tianjin 300300,China

Received date: 2024-04-25

  Revised date: 2024-06-04

  Accepted date: 2024-06-18

  Online published: 2024-06-20

Supported by

National Natural Science Foundation of China(62173332);Tianjin Diversified Fund Project(21JCYBJCO0700┫?);?University-Level Graduate Student Innovation and Entrepreneurship Project(2023YJSKC03007);Tianjin Education Commission Natural Science Key Project(2020ZD01)

摘要

未来城市低空或将面对大量电动垂直起降飞行器(electric Vertical Take-Off and Landing,eVTOL)的运行需求,将存在空域利用率低、碰撞风险高等潜在问题,保障飞行器运行的安全和高效需要合适的安全间隔标准。研究了城市低空下多机型eVTOL的安全间隔,为复合翼型eVTOL建立了经典Event纵向、侧向和垂直碰撞模型,为多旋翼型eVTOL建立了基于圆台体碰撞盒的改进Event模型。按照eVTOL的有效载荷与载客数,将eVTOL划分为轻型、中型和重型,选取主流机型进行分类统计并计算碰撞盒尺寸,考虑定位误差、借鉴所需导航性能(RNP)概念计算参数纵向、侧向和垂直重叠概率,并考虑航向角分布、俯仰角限制、速度误差分布等,建立仿真环境来计算相对速度这一参数。最后根据建立的碰撞模型计算不同类型eVTOL的侧向、纵向和垂直安全间隔,将轻型、中型和重型的安全目标水平分别设置为10-7,10-8,10-9次/飞行小时,最终得出不同类型eVTOL之间的最小间隔,其中轻型多旋翼、轻型复合翼、中型复合翼、重型复合翼之间的最小安全间隔分别是82、83、93、102 m。研究结果可以为eVTOL间隔标准制定提供参考。

本文引用格式

王兴隆 , 王友杰 . 面向城市低空的多机型eVTOL安全间隔评估[J]. 航空学报, 2025 , 46(1) : 330604 -330604 . DOI: 10.7527/S1000-6893.2024.30604

Abstract

In the future, urban low altitude may face a large number of demands for operation of electric Vertical Take-Off and Landing (eVTOL), which will result in potential problems of low airspace utilization, high collision risk, etc. To ensure the safety and efficiency of aircraft operation, it is necessary to establish appropriate safety interval standards. To study the safety interval of multi-model eVTOL in urban low altitude, a classical Event longitudinal, lateral and vertical collision model is established for composite-wing eVTOL, and an improved Event model based on the frustum of the cone collision box is established for multi-rotor eVTOL. The eVTOLs are classified into three categories of light, medium and heavy types according to their payload and number of passengers. The mainstream models are selected for statistical analysis, and the collision box sizes of the models are calculated. Considering the positioning error, the longitudinal, lateral and vertical overlap probability of the aforementioned parameters is calculated using the concept of Required Navigation Performance (RNP). A simulation environment is established to calculate the parameter of relative velocity, taking into account the distribution of heading angle, pitch angle limitation, and velocity error distribution. Finally, the lateral, longitudinal and vertical safety intervals of different types of eVTOLs are calculated according to the established collision model. The target level of safety of light, medium and heavy eVTOL are set to 10-7, 10-8 and 10-9 times/flight hour, respectively. The minimum intervals between different types of eVTOL are finally derived. These intervals are determined to be 82, 83, 93, 102 m, respectively, for light multi-rotor, light composite wings, medium composite wings, and heavy composite wings. The results of the study can provide a reference for the development of eVTOL interval standards.

参考文献

1 THIPPHAVONG D P, APAZA R, BARMORE B, et al. Urban air mobility airspace integration concepts and considerations: AIAA-2018-3676[R]. Reston: AIAA, 2018.
2 HILL B, DECARME D. Urban air mobility (UAM) vision concept of operations (ConOps) UAM maturity level (UML)-4[C]?∥ UAM UML-4 Vision ConOps Workshops. Washington, D.C.: NASA, 2021.
3 Federal Aviation Administration. Urban air mobility (UAM) concept of operations: Version 1.0[R]. Washington, D.C.: NASA, 2020.
4 Federal Aviation Administration. Urban air mobility (UAM) concept of operations: Version 2.0[R]. Washington, D.C.: NASA, 2023.
5 李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报202020(4): 35-54.
  LI C L, QU W Q, LI Y D, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering202020(4): 35-54 (in Chinese).
6 张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报202142(7): 024638.
  ZHANG H H, ZOU Y Y, ZHANG Q Q, et al. Future urban air mobility management: Review[J]. Acta Aeronautica et Astronautica Sinica202142(7): 024638 (in Chinese).
7 HUSSAIN A, Rutgers V. Change is in the air: The elevated future of mobility: What’s next on the horizon [R/OL]. (2019-06-03)[2024-04-25]. .
8 Morgan Stanley Research. Flying cars: Investment implications of autonomous urban air mobility[R]. New York: Morgan Stanley, 2018.
9 中国民用航空局. 亿航EH216-S型无人驾驶航空器系统专用条件: [S]. 2022-02-22.
  Civil Aviation Administration of China. EH216-S unmanned aerial vehicle system special conditions: [S]. 2022-02-22 (in Chinese).
10 中国民航网.亿航智能EH216-S获中国民航局颁发生产许可证[EB/OL]. (2024-04-07)[2024-04-25]. .
  Civil Aviation Administration of China. EH intelligent EH216-S receives production licence from Civil Aviation Administration of China (CAAC) [EB/OL]. (2024-04-07)[2024-04-09]. (in Chinese).
11 廖小罕, 屈文秋, 徐晨晨, 等. 城市空中交通及其新型基础设施低空公共航路研究综述[J]. 航空学报202344(24): 028521.
  LIAO X H, QU W Q, XU C C, et al. A review of urban air mobility and its new infrastructure low-altitude public routes[J]. Acta Aeronautica et Astronautica Sinica202344(24): 028521 (in Chinese).
12 REICH P G. Analysis of long-range air traffic systems: Separation standards-I[J]. The Journal of Navigation199750(3): 436-447.
13 BROOKER P. Lateral collision risk in air traffic track systems: A ‘Post-Reich’ event model[J]. The Journal of Navigation200356(3): 399-409.
14 BROOKER P. Longitudinal collision risk for ATC track systems: A hazardous event model[J]. Journal of Navigation200659(1): 55-70.
15 徐肖豪, 李冬宾, 李雄. 飞行间隔安全评估研究[J]. 航空学报200830(6): 1411-1418.
  XU X H, LI D B, LI X. Research on safety assessment of flight separation[J]. Acta Aeronautica et Astronautica Sinica200830(6): 1411-1418 (in Chinese).
16 徐肖豪, 王振宇, 赵鸿盛. 基于Event的侧向碰撞风险改进模型[J]. 中国民航大学学报200826(3): 1-4.
  XU X H, WANG Z Y, ZHAO H S. Improved lateral collision risk model based on Event[J]. Journal of Civil Aviation University of China200826(3): 1-4 (in Chinese).
17 戴福青, 周启. 基于Event的垂直碰撞风险改进模型研究[J]. 中国民航大学学报201129(6): 4-7.
  DAI F Q, ZHOU Q. Study on improved vertical collision risk model based on Event[J]. Journal of Civil Aviation University of China201129(6): 4-7 (in Chinese).
18 黄晋, 焦瑶瑶, 刘厚荣, 等. 基于改进Event模型的交叉航路碰撞风险分析[J]. 航空计算技术202353(1): 11-15.
  HUANG J, JIAO Y Y, LIU H R, et al. Cross route collision risk analysis based on improved Event model[J]. Aeronautical Computing Technique202353(1): 11-15 (in Chinese).
19 王莉莉, 鲁胜男. 平行进近偏航下Event碰撞风险模型[J]. 中国安全科学学报201929(11): 8-13.
  WANG L L, LU S N. Collision risk of parallel approach in yaw based on Event model[J]. China Safety Science Journal201929(11): 8-13 (in Chinese).
20 张兆宁, 时瑞军. 自由飞行下改进的Event碰撞风险计算模型[J]. 中国安全科学学报201525(7): 35-40.
  ZHANG Z N, SHI R J. Study on free flight collision risk based on improved Event model[J]. China Safety Science Journal201525(7): 35-40 (in Chinese).
21 ZHANG Z Y, ZHANG J, WANG P, et al. Research on operation of UAVs in non-isolated airspace[J]. Computers, Materials & Continua, 201857(1): 151-166.
22 邓力. 无人机与民航客机碰撞概率研究[J]. 南京理工大学学报(自然科学版)201943(1): 122-128.
  DENG L. Research of collision probability of unmanned aerial vehicles and civil airplane[J]. Journal of Nanjing University of Science and Technology201943(1): 122-128 (in Chinese).
23 韩鹏, 周斌, 张恩宇. 终端区多场景有人机/无人机空中碰撞风险研究[J]. 西华大学学报(自然科学版)202241(2): 8-11.
  HAN P, ZHOU B, ZHANG E Y. Air collision risk of manned drones in multiple scenarios in the terminal area[J]. Journal of Xihua University (Natural Science Edition)202241(2): 8-11 (in Chinese).
24 ZHANG Z G, LU X H, ZHANG Y C, et al. Research on collision risk between light unmanned arial vehicles and aircraft windshield[J]. Transactions of Nanjing University of Aeronautics and Astronautics202340(5): 534-546.
25 甄然, 赵正, 康兢, 等. 基于EVENT改进模型的碰撞风险研究[J]. 河北工业科技202138(1): 7-11.
  ZHEN R, ZHAO Z, KANG J, et al. Research on collision risk based on improved EVENT model[J]. Hebei Journal of Industrial Science and Technology202138(1): 7-11 (in Chinese).
26 张洪海, 李博文, 刘皞, 等. 自由空域下多旋翼无人机安全间隔标定方法[J]. 系统工程与电子技术202345(10): 3149-3156.
  ZHANG H H, LI B W, LIU H, et al. Demarcation method of safety separation for multi-rotor UAV in free airspace[J]. Systems Engineering and Electronics202345(10): 3149-3156 (in Chinese).
27 ZHONG G, DU S, ZHANG H H, et al. Demarcation method of safety separations for sUAV based on collision risk estimation[J]. Reliability Engineering & System Safety2024242: 109738.
28 ZOU Y Y, ZHANG H H, ZHONG G, et al. Collision probability estimation for small unmanned aircraft systems[J]. Reliability Engineering & System Safety2021213: 107619.
29 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报202445(5): 529937.
  DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica202445(5): 529937 (in Chinese).
30 孟祥伟, 张平. 低空非管制空域航空器碰撞风险研究[C]∥ 2010年航空器适航与空中交通管理学术年会. 2010: 127-134.
  MENG X W, ZHANG P. Research on aircraft mid-air collision risk in low-altitude uncontrolled airspace[C]?∥ 2010 Annual Conference on Airworthiness and Air Traffic Management. 2010: 127-134 (in Chinese).
31 王莉莉, 阳杰. 基于速度随机分布的低空空域小型无人机碰撞风险评估模型[J]. 交通信息与安全202240(4):64-70.
  WANG L L, YANG J. A collision risk model for small UAVs based on velocity random distribution in low-altitude airspace[J]. Journal of Transport Information and Safety202240(4): 64-70 (in Chinese).
32 EASA. Means of compliance with the special condition VTOL[EB/OL].(2021-05-12)[2024-04-25]. .
33 中国民用航空局航空器适航审定司. 民用无人驾驶航空器系统适航审定分级分类和系统安全性分析指南: AC-21-AA-2022-40 [S]. 2022-12-21.
  Department of Aircraft Airworthiness Certification, Civil Aviation Administration of China. Civil unmanned aerial vehicle system airworthiness certification classification and system safety analysis guide: AC-21-AA-2022-40 [S]. 2022-12-21 (in Chinese).
文章导航

/