深空光电测量与智能感知技术专栏

弱光环境下基于深度学习的单光子计数成像去噪方法

  • 赵志浩 ,
  • 杨照华 ,
  • 吴云 ,
  • 余远金
展开
  • 1.北京航空航天大学 仪器科学与光电工程学院,北京 100191
    2.北京控制工程研究所,北京 100090
    3.北京理工大学 自动化学院,北京 100081

收稿日期: 2024-04-16

  修回日期: 2024-05-23

  录用日期: 2024-06-12

  网络出版日期: 2024-06-17

基金资助

国家自然科学基金(62222304);北京控制工程研究所空间光电测量与感知实验室开放基金(LabSOMP-2022-04)

Single-photon counting imaging denoising method based on deep learning in low-light environment

  • Zhihao ZHAO ,
  • Zhaohua YANG ,
  • Yun WU ,
  • Yuanjin YU
Expand
  • 1.School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China
    2.Beijing Institute of Control Engineering,Beijing 100090,China
    3.School of Automation,Beijing Institute of Technology,Beijing 100081,China

Received date: 2024-04-16

  Revised date: 2024-05-23

  Accepted date: 2024-06-12

  Online published: 2024-06-17

Supported by

National Natural Science Foundation of China(62222304);Space Optoelectronic Measurement and Perception Laboratory, Beijing Institute of Control Engineering(LabSOMP-2022-04)

摘要

单像素单光子计数成像灵敏度高的特点使其在弱光环境下探测极具优势,但其重构图像质量依然会随着光信号的减弱而退化,为此设计了基于深度学习去噪的单像素单光子计数成像方法以提高弱光条件下重构图像的信噪比。首先,建立单像素单光子计数成像系统;然后,利用压缩感知算法对图像进行重构;最后,分别使用三维块匹配算法和深度学习算法对重构图像进行去噪,并对2种方法去噪效果进行了比较分析。实验结果表明,三维块匹配算法和深度学习算法都能提高图像信噪比,基于深度学习图像去噪的单像素单光子计数成像方法获得的图像信噪比提升了12.97 dB,极大地提升了弱光环境下的图像信噪比,且优于三维块匹配算法。因此,所提方法为提升单像素单光子成像系统在弱光环境中重构图像质量提供了一种新的思路。

本文引用格式

赵志浩 , 杨照华 , 吴云 , 余远金 . 弱光环境下基于深度学习的单光子计数成像去噪方法[J]. 航空学报, 2025 , 46(3) : 630531 -630531 . DOI: 10.7527/S1000-6893.2024.30531

Abstract

The high sensitivity of single-pixel single-photon counting imaging makes it extremely advantageous in low-light detection, but the quality of the reconstructed images with this method will still degrade with the weakening of light flux. A single-pixel single-photon counting imaging method based on deep learning denoising is designed to improve the signal-to-noise ratio of reconstructed images in low-light environment. Firstly, a single-pixel single-photon counting imaging system is established. Then, the compressed sensing algorithm is used to reconstruct the image. Finally, the 3D block matching algorithm and the deep learning algorithm are used to denoise the reconstructed image, and the denoising effects of the two algorithms are compared. Ther results show that both of the deep learning algorithm and the 3D block matching algorithm can improve the signal-to-noise ratio of the image. The signal-to-noise ratio of the image obtained by the single-pixel single-photon counting imaging method based on deep learning image denoising is increased by 12.97 dB,which has a great increase of the image signal-to-noise ratio in the low-light environment, and has a higher signal-to-noise ratio than that obtained by the 3D block matching algorithm. Therefore, this method provides a new idea for improving the quality of the image reconstructed by the single-pixel single-photon imaging system in the low-light environment.

参考文献

1 KALIRAI J. Scientific discovery with the James Webb Space Telescope?[J]. Contemporary Physics201859(3): 251-290.
2 STELZER E H K, STROBL F, CHANG B J, et al. Light sheet fluorescence microscopy[J]. Nature Reviews Methods Primers20211: 73.
3 TSUCHIDA K, IWASA T, KOBAYASHI M. Imaging of ultraweak photon emission for evaluating the oxidative stress of human skin?[J]. Journal of Photochemistry and Photobiology B: Biology2019198: 111562.
4 JOHNSON S D, MOREAU P A, GREGORY T, et al. How many photons does it take to form an image?[J]. Applied Physics Letters2020116(26): 260504.
5 MORRIS P A, ASPDEN R S, BELL J E C, et al. Imaging with a small number of photons[J]. Nature Communications20156: 5913.
6 MANDRACCHIA B, HUA X W, GUO C L, et al. Fast and accurate sCMOS noise correction for fluorescence microscopy?[J]. Nature Communications202011: 94.
7 TAKHAR D, LASKA J N, WAKIN M B, et al. A new compressive imaging camera architecture using optical-domain compression?[C]?∥Computational Imaging IV-Proceedings of SPIE-IS and T Electronic Imaging. 2006: 43-52.
8 DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine200825(2): 83-91.
9 EDGAR M P, GIBSON G M, PADGETT M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics201913: 13-20.
10 LIU X L, SHI J H, SUN L, et al. Photon-limited single-pixel imaging[J]. Optics Express202028(6): 8132-8144.
11 WANG H Y, BIAN L H, ZHANG J. Depth acquisition in single-pixel imaging with multiplexed illumination[J]. Optics Express202129(4): 4866-4874.
12 JAUREGUI-SáNCHEZ Y, CLEMENTE P, LATORRE-CARMONA P, et al. Signal-to-noise ratio of single-pixel cameras based on photodiodes?[J]. Applied Optics201857(7): B67-B73.
13 俞文凯, 姚旭日, 刘雪峰, 等. 压缩传感用于极弱光计数成像[J]. 光学 精密工程201220(10): 2283-2292.
  YU W K, YAO X R, LIU X F, et al. Compressed sensing for ultra-weak light counting imaging[J]. Optics and Precision Engineering201220(10): 2283-2292 (in Chinese).
14 DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering?[J]. IEEE Transactions on Image Processing200716(8): 2080-2095.
15 YAHYA A A, TAN J Q, SU B Y, et al. BM3D image denoising algorithm based on an adaptive filtering?[J]. Multimedia Tools and Applications202079(27): 20391-20427.
16 LEBRUN M. An analysis and implementation of the BM3D image denoising method[J]. Image Processing On Line20122: 175-213.
17 EKSIOGLU E M, TANC A K. Denoising AMP for MRI reconstruction: BM3D-AMP-MRI[J]. SIAM Journal on Imaging Sciences201811(3): 2090-2109.
18 ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising?[J]. IEEE Transactions on Image Processing201726(7): 3142-3155.
19 ZHANG K, ZUO W M, ZHANG L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing201827(9): 4608-4622.
20 ZHANG K, LI Y W, ZUO W M, et al. Plug-and-play image restoration with deep denoiser prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202244(10): 6360-6376.
21 SANKARANARAYANAN A C, XU L N, STUDER C, et al. Video compressive sensing for spatial multiplexing cameras using motion-flow models[J]. SIAM Journal on Imaging Sciences20158(3): 1489-1518.
22 LI C B, YIN W T, JIANG H, et al. An efficient augmented Lagrangian method with applications to total variation minimization?[J]. Computational Optimization and Applications201356(3): 507-530.
23 孙鸣捷, 闫崧明, 王思源. 鬼成像和单像素成像技术中的重建算法[J]. 激光与光电子学进展202259(2): 0200001.
  SUN M J, YAN S M, WANG S Y. Reconstruction algorithms for ghost imaging and single-pixel imaging[J]. Laser & Optoelectronics Progress202259(2): 0200001 (in Chinese).
24 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition?[C]?∥2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
25 RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation?[C]?∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
26 李明飞, 阎璐, 杨然, 等. 日光强度涨落自关联消湍流成像[J]. 物理学报201968(9): 149-156.
  LI M F, YAN L, YANG R, et al. Turbulence-free intensity fluctuation self-correlation imaging with sunlight[J]. Acta Physica Sinica201968(9): 149-156 (in Chinese).
27 YU W K. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort[J]. Sensors201919(19): 4122.
文章导航

/