基于功率谱分割的随机振动疲劳寿命估算方法
收稿日期: 2024-01-30
修回日期: 2024-04-07
录用日期: 2024-06-07
网络出版日期: 2024-06-14
基金资助
国家自然科学基金(12102019)
Fatigue life estimation method for random vibration based on power spectral density segmentation
Received date: 2024-01-30
Revised date: 2024-04-07
Accepted date: 2024-06-07
Online published: 2024-06-14
Supported by
National Natural Science Foundation of China(12102019)
机械结构在随机振动载荷的持续作用下易激起自身部分阶模态,从而引发共振导致疲劳破坏,而对其进行寿命估算分析可有效预防结构疲劳失效,具有重要的工程意义。本文区别于传统从概率密度函数出发建立经验模型的振动疲劳寿命估算方法,从功率谱密度分割角度着手,运用理论推导和数值仿真相结合的方法,探讨了功率谱密度共振与非共振区的划分依据,分割形式对损伤估算的影响,并研究了多模态响应之间的耦合效应。结果表明,仅考虑功率谱密度共振区能提高损伤的估算精度,其分割形式对损伤估算并无影响,相较于常用Dirlik法和T-B法,本文多模态耦合损伤估算表达式对随机振动疲劳的损伤估算具有更强的适用性。
赵寿根 , 王显浩 , 谢瑞丽 , 李名 , 程伟 . 基于功率谱分割的随机振动疲劳寿命估算方法[J]. 航空学报, 2024 , 45(23) : 230265 -230265 . DOI: 10.7527/S1000-6893.2024.30265
In the presence of sustained random vibration loads, mechanical structures easily induce their own partial-order modes, leading to resonance and fatigue failure. Life expectancy analysis effectively prevents structural fatigue failure, exhibiting important engineering significance. Diverging from traditional approaches that establish empirical models based on probability density functions, this study focuses on the power spectral density segmentation. Combining theoretical derivation and numerical simulation, the research explores the dividing criteria for power spectral density resonance and non-resonance regions, investigates the impact of segmentation forms on damage estimation, and explores the coupling effects among multi-modal responses. The results indicate that considering only the power spectral density resonance region enhances damage estimation accuracy. The segmentation form has no effect on damage estimation. The proposed expression for multi-modal coupled damage estimation demonstrates superior applicability to random vibration fatigue compared to commonly used Dirlik and T-B methods.
1 | 刘小川, 马君峰, 白春玉, 等. 航空结构动力学研究的进展与展望[J]. 应用力学学报, 2022, 39(3): 409-436. |
LIU X C, MA J F, BAI C Y, et al. Progress and prospect of aviation structural dynamics research[J]. Chinese Journal of Applied Mechanics, 2022, 39(3): 409-436 (in Chinese). | |
2 | 姚起杭, 姚军. 工程结构的振动疲劳问题[J]. 应用力学学报, 2006, 23(1): 12-15. |
YAO Q H, YAO J. Vibration fatigue in engineering structures[J]. Chinese Journal of Applied Mechanics, 2006, 23(1): 12-15 (in Chinese). | |
3 | 刘文光, 陈国平, 贺红林, 等. 结构振动疲劳研究综述[J]. 工程设计学报, 2012, 19(1): 1-8, 24. |
LIU W G, CHEN G P, HE H L, et al. Review of studying on vibration fatigue[J]. Chinese Journal of Engineering Design, 2012, 19(1): 1-8, 24 (in Chinese). | |
4 | BENDAT J S. Probability functions for random responses: NAS-5-4590 [R]. Washington, D.C.: NASA, 1964. |
5 | WU S D, SHANG D G, LIU P C, et al. Fatigue life prediction based on modified narrowband method under broadband random vibration loading[J]. International Journal of Fatigue, 2022, 159: 106832. |
6 | TURAN D. Application of computers in fatigue analysis[D]. Coventry: University of Warwick, 1985. |
7 | BENASCIUTTI D, TOVO R. Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27(8): 867-877. |
8 | DIRLIK T, BENASCIUTTI D. Dirlik and tovo-benasciutti spectral methods in vibration fatigue: A review with a historical perspective[J]. Metals, 2021, 11(9): 1333. |
9 | DURODOLA J F, LI N, RAMACHANDRA S, et al. A pattern recognition artificial neural network method for random fatigue loading life prediction[J]. International Journal of Fatigue, 2017, 99: 55-67. |
10 | KONG Y S, ABDULLAH S, SCHRAMM D, et al. Vibration fatigue analysis of carbon steel coil spring under various road excitations[J]. Metals, 2018, 8(8): 617. |
11 | WANG N N, LIU J X, ZHANG Q, et al. Fatigue life evaluation and failure analysis of light beam direction adjusting mechanism of an automobile headlight exposed to random loading[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(2): 224-231. |
12 | CIMA M, SOLAZZI L. Experimental and analytical study of random fatigue, in time and frequencies domain, on an industrial wheel[J]. Engineering Failure Analysis, 2021, 120: 105029. |
13 | KIM H G, KIM G C, JI W, et al. Random vibration fatigue analysis of a multi-material battery pack structure for an electric vehicle[J]. Functional Composites and Structures, 2021, 3(2): 025006. |
14 | 曹明红, 邵闯, 齐丕骞. 宽带随机振动疲劳寿命的频域分析与试验对比研究[J]. 机械科学与技术, 2013, 32(6): 839-844. |
CAO M H, SHAO C, QI P Q. Comparison of the frequency-domain analysis and the test results for a wide-band random vibration fatigue problem[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(6): 839-844 (in Chinese). | |
15 | BENASCIUTTI D, CRISTOFORI A, TOVO R. Analogies between spectral methods and multiaxial criteria in fatigue damage evaluation[J]. Probabilistic Engineering Mechanics, 2013, 31: 39-45. |
16 | BRACCESI C, CIANETTI F, TOMASSINI L. Random fatigue. A new frequency domain criterion for the damage evaluation of mechanical components[J]. International Journal of Fatigue, 2015, 70: 417-427. |
17 | BENASCIUTTI D, BRACCESI C, CIANETTI F, et al. Fatigue damage assessment in wide-band uniaxial random loadings by PSD decomposition: Outcomes from recent research[J]. International Journal of Fatigue, 2016, 91: 248-250. |
18 | 郑向远, 高山, 李炜. 一种新的高斯多模态随机疲劳损伤频域分析方法[J]. 哈尔滨工业大学学报, 2020, 52(10): 85-93. |
ZHENG X Y, GAO S, LI W. A new frequency-domain method for analysis of Gaussian multi-modal random fatigue damage[J]. Journal of Harbin Institute of Technology, 2020, 52(10): 85-93 (in Chinese). | |
19 | 袁奎霖, 靳宏义. 一种新的高斯双模态随机疲劳损伤分析方法[J]. 哈尔滨工业大学学报, 2023, 55(8): 135-142. |
YUAN K L, JIN H Y. Development of a new frequency-domain method for fatigue damage assessment in bimodal Gaussian random processes[J]. Journal of Harbin Institute of Technology, 2023, 55(8): 135-142 (in Chinese). | |
20 | 骆政波, 范鑫, 刘峰, 等. 一种多轴向耦合随机激励下缺口试件振动疲劳寿命预测方法[J]. 振动与冲击, 2023, 42(17): 105-113. |
LUO Z B, FAN X, LIU F, et al. A method for predicting vibration fatigue life of notched specimens under multi-axial coupled random excitation[J]. Journal of Vibration and Shock, 2023, 42(17): 105-113 (in Chinese). | |
21 | 姚卫星. 结构疲劳寿命分析[M]. 北京: 科学出版社, 2019: 76-80. |
YAO W X. Fatigue life estimation of structures[M]. Beijing: Science Press, 2019: 76-80 (in Chinese). |
/
〈 |
|
〉 |