一种提升空间暗弱目标探测灵敏度的方法
收稿日期: 2023-12-05
修回日期: 2024-03-18
录用日期: 2024-05-20
网络出版日期: 2024-06-14
基金资助
国家自然科学基金(52275083)
A method to improve sensor sensitivity in detecting dim targets in space
Received date: 2023-12-05
Revised date: 2024-03-18
Accepted date: 2024-05-20
Online published: 2024-06-14
Supported by
National Natural Science Foundation of China(52275083)
张得阳 , 郑然 , 程会艳 , 孟小迪 , 齐静雅 , 李林 , 林大泳 . 一种提升空间暗弱目标探测灵敏度的方法[J]. 航空学报, 2025 , 46(3) : 629944 -629944 . DOI: 10.7527/S1000-6893.2024.29944
To overcome the difficulty of accurately detecting more spatial dim and weak targets, this paper proposes a method to improve the detection sensitivity of the star sensor based on multi-frame stick of gyroscope measurement data. Before star maps are overlaid, the angular velocity measured by the gyroscope is processed, and fixed pattern noise is removed. With the bright stars in the map as the reference, the difference, the angular velocity deviation, between the moving vectors of the bright star calculated from angular velocity and that from the actual measurement are achieved. The accurate moving distance of the target in the map will be got based on the modified angular velocity. Then, the star points can be stuck precisely according to the accurate moving distance. The target energy is effectively accumulated and the background noise reduced by sticking. Simulation analysis and test verification show that the proposed method can effectively improve the target signal-to-noise ratio, improving the detection sensitivity.
1 | ZHANG Y K, RAO P, JIA L J, et al. Dim moving infrared target enhancement based on precise trajectory extraction[J]. Infrared Physics & Technology, 2023, 128: 104374. |
2 | NASIRI M, CHEHRESA S. Infrared small target enhancement based on variance difference[J]. Infrared Physics & Technology, 2017, 82: 107-119. |
3 | ZHANG Q, PAN W J, ZHU X P, et al. Enhancement method for infrared dim-small target images based on rough set[C]∥2017 4th International Conference on Information Science and Control Engineering (ICISCE). Piscataway: IEEE Press, 2017: 301-306. |
4 | YONG Y, WANG B X, ZHANG W H, et al. Low-contrast small target image enhancement based on rough set theory[C]∥Electronic Imaging and Multimedia Technology V. SPIE, 2007. |
5 | FAN X S, XU Z Y, ZHANG J L. An enhancement algorithm for dim and small infrared target based on time and spatial correlation[C]∥Infrared Technology and Applications, and Robot Sensing and Advanced Control. SPIE, 2016. |
6 | LI Z Z, QI L, LI W Y, et al. Track initiation for dim small moving infrared target based on spatial-temporal hypothesis testing[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(5): 513-525. |
7 | BAI X Z, ZHOU F G. Hit-or-miss transform based infrared dim small target enhancement[J]. Optics & Laser Technology, 2011, 43(7): 1084-1090. |
8 | BAI X Z. Morphological operator for infrared dim small target enhancement using dilation and erosion through structuring element construction[J]. Optik, 2013, 124(23): 6163-6166. |
9 | BAI X Z, ZHOU F G, XUE B D. Infrared dim small target enhancement using toggle contrast operator[J]. Infrared Physics & Technology, 2012, 55(2-3): 177-182. |
10 | ZHOU J J, LV H Y, ZHOU F G. Infrared small target enhancement by using sequential top-hat filters[C]∥International Symposium on Optoelectronic Technology and Application 2014: Image Processing and Pattern Recognition. SPIE, 2014 |
11 | ZHANG G F, HAMDULLA A. Adaptive morphological contrast enhancement based on quantum genetic algorithm for point target detection[J]. Mobile Networks and Applications, 2021, 26(2): 638-648. |
12 | BAE T W, ZHANG F, KWEON I S. Edge directional 2D LMS filter for infrared small target detection[J]. Infrared Physics & Technology, 2012, 55(1): 137-145. |
13 | YANG W P, SHEN Z K. Preprocessing technology for small target detection in infrared image sequences[J]. Infrared & Laser Engineering, 1998, 27(1):23-28. |
14 | FAN H J, WEN C Y. Two-dimensional adaptive filtering based on projection algorithm[J]. IEEE Transactions on Signal Processing, 2004, 52(3): 832-838. |
15 | GONZALEZ R C, WOODS R E. Digital image processing [M]. second ed. London: Prentice Hall, 2003. |
16 | 孙瑾秋, 张艳宁, 姜磊, 等. 基于时空域融合滤波的弱小运动目标检测算法[J]. 机械科学与技术, 2009, 28(1): 20-24. |
SUN J Q, ZHANG Y N, JIANG L, et al. Detection of a dim and small moving target using a temporal-spatial fusion filtering algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(1): 20-24 (in Chinese). | |
17 | LEI Y F, WANG L, ZHONG H J, et al. Space-based identification method for space targets assisted by cataloging information[C]∥2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). Piscataway: IEEE Press, 2022: 787-790. |
18 | YANAGISAWA T, KUROSAKI H, NAKAJIMA A. Present status of space debris optical observational facility of JAXA at Mt. Nyukasa[C]∥5th European Conference on Space Debris. Darmstadt: European Space Agency, 2009. |
19 | 王恩旺, 王恩达. 改进的帧差法在空间运动目标检测中的应用[J]. 天文研究与技术-国家天文台台刊, 2016, 13(3): 333-339. |
WANG E W, WANG E D. Application of an improved frame difference method in space moving target detection[J]. Astronomical Research & Technology, 2016, 13(3): 333-339 (in Chinese). | |
20 | 邵秀娟, 胡炳樑, 闫鹏. 星空背景中目标识别算法研究[J]. 现代电子技术, 2010, 33(4): 163-165. |
SHAO X J, HU B L, YAN P. Research on target recognition algorithm for microspacecraft[J]. Modern Electronics Technique, 2010, 33(4): 163-165 (in Chinese). | |
21 | ZENG Y Q, CHEN Q, Dim and small target background suppression based on improved bilateral filtering for single infrared image[J]. Infrared Technology, 2011, 33(9): 124-128. |
22 | BAE T W. Small target detection using bilateral filter and temporal cross product in infrared images[J]. Infrared Physics & Technology, 2011, 54(5): 403-411. |
23 | WEI H Y, TAN Y H, LIN J. Robust infrared small target detection via temporal low-rank and sparse representation[C]∥2016 3rd International Conference on Information Science and Control Engineering (ICISCE). Piscataway: IEEE Press, 2016: 583-587. |
/
〈 |
|
〉 |