气动噪声专栏

考虑剪切流的航空声衬三维阻抗直接提取方法

  • 陈凌峰 ,
  • 韩云霄 ,
  • 冯博宇 ,
  • 洪志亮 ,
  • 王晓宇 ,
  • 杜林
展开
  • 1.中国民航大学 安全科学与工程学院,天津 300300
    2.北京航空航天大学 航空发动机研究院,北京 100191
.E-mail: zlhong@cauc.edu.cn

收稿日期: 2024-03-01

  修回日期: 2024-04-07

  录用日期: 2024-05-10

  网络出版日期: 2024-05-22

基金资助

国家自然科学基金(52206062);中国民航大学国家自然科学基金配套专项(3122023PT09);中央高校基本科研业务费项目中国民航大学专项(3122022QD06)

A three-dimensional straightforward method for acoustic liner impedance eduction under shear grazing flow

  • Lingfeng CHEN ,
  • Yunxiao HAN ,
  • Boyu FENG ,
  • Zhiliang HONG ,
  • Xiaoyu WANG ,
  • Lin DU
Expand
  • 1.College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China
    2.Research Institute of Aero-Engine,Beihang University,Beijing 100191,China
E-mail: zlhong@cauc.edu.cn

Received date: 2024-03-01

  Revised date: 2024-04-07

  Accepted date: 2024-05-10

  Online published: 2024-05-22

Supported by

National Natural Science Foundation of China(52206062);National Natural Science Foundation of China-Civil Aviation University of China(3122023PT09);Fundamental Research Funds for Central Universities-Civil Aviation University of China(3122022QD06)

摘要

宽频声衬的发展要求在阻抗提取过程中要考虑管道三维声场,而已有的三维阻抗提取方法中普遍将切向流假设为均匀流动,这与实际流管中为剪切流动的情况不符。为了同时解决声衬阻抗提取中的三维声场处理和剪切切向流问题,发展了一种考虑等效一维剪切流的三维阻抗直接提取方法。该方法利用布置在声衬对面刚壁上的矩形测点阵列上的声压数据,首先在展向利用模态分解得到中间变量,再利用龙格-库塔迭代直接求解纵向特征值问题得到轴向波数,最后利用阻抗边界条件得到阻抗。通过基于有限元的数值模拟实验,该方法在平面波和平面波占优入射条件下的准确性得到了验证。通过对是否考虑剪切切向流的阻抗提取结果进行对比,可以发现剪切流虽然在低于截止频率的中低频范围内对阻抗提取影响较小,但是在高频范围内却可能显著影响阻抗提取的精度,并且随着流动马赫数的增加,剪切流的影响愈加凸显。

本文引用格式

陈凌峰 , 韩云霄 , 冯博宇 , 洪志亮 , 王晓宇 , 杜林 . 考虑剪切流的航空声衬三维阻抗直接提取方法[J]. 航空学报, 2024 , 45(23) : 630333 -630333 . DOI: 10.7527/S1000-6893.2024.30333

Abstract

The development of broadband acoustic liners requires taking the three-dimensional acoustic field into consideration in impedance eduction. However, in existing three-dimensional impedance eduction methods, the grazing flow is generally assumed to be uniform, which is inconsistent with the actual situation of shear flow in flow ducts. To simultaneously solve the problems of three-dimensional acoustic field and shear grazing flow in acoustic liner impedance eduction, a three-dimensional straightforward method considering a one-dimensional equivalent shear flow is developed. Using sound pressure data from a rectangular array of measuring points arranged on the rigid wall opposite to the liner surface, spanwise modal decomposition is firstly conducted to obtain intermediate variables, which can then be solved through Runge-Kutta iteration to compute the axial wavenumber. Finally, impedance is educed according to the impedance boundary conditions. The accuracy of this method is verified through numerical simulation experiments based on the finite element method for both plane-wave and plane-wave dominant incidence. By comparing the educed impedances with and without considering the shear grazing flow, it can be found that although shear flow has a relatively small impact on impedance eduction in the mid to low frequency range below the cutoff frequency, it may significantly affect the accuracy of the eduction result in the high frequency range. Moreover, as the flow Mach number increases, the influence of shear flow becomes more important.

参考文献

1 乔渭阳, 王良锋, 段文华, 等. 航空发动机气动声学设计的理论、模型和方法[J]. 推进技术202142(1): 10-38.
  QIAO W Y, WANG L F, DUAN W H, et al. Theory, model and method of aero-engine aeroacoustic design[J]. Journal of Propulsion Technology202142(1): 10-38 (in Chinese).
2 王晓宇. 传递单元方法及其在航空发动机短舱声学 问题中的应用[D]. 北京: 北京航空航天大学, 2010: 3.
  WANG X Y. Transfer element method and its application in the acoustic design of aeroengine?[D]. Beijing: Beihang University, 2010: 3 (in Chinese).
3 NARK D M, JONES M G. Further development and assessment of a broadband liner optimization process: AIAA-2016-2784[R]. Reston: AIAA, 2016.
4 NARK D M, JONES M G. Design of an advanced inlet liner for the quiet technology demonstrator 3: AIAA-2019-2764[R]. Reston: AIAA, 2019.
5 SUTLIFF D L, NARK D M, JONES M G, et al. Design and acoustic efficacy of a broadband liner for the inlet of the DGEN aero-propulsion research turbofan: AIAA-2019-2582[R]. Reston: AIAA, 2019.
6 JONES M G, WATSON W R, NARK D M, et al. A review of acoustic liner experimental characterization at NASA Langley: NASA/TP-2020-220583[R]. Washington, D.C.: NASA, 2020.
7 WENG C Y, SCHULZ A, RONNEBERGER D, et al. Impedance eduction in the presence of turbulent shear flow using the linearized Navier-Stokes equations: AIAA-2017-3182[R]. Reston: AIAA, 2017.
8 QIU X H, XIN B, WU L, et al. Investigation of straightforward impedance eduction method on single-degree-of-freedom acoustic liners[J]. Chinese Journal of Aeronautics201831(12): 2221-2233.
9 ZHANG P L, HUANG Y, YANG Z Y, et al. Effect of source direction on liner impedance eduction with consideration of shear flow[J]. Applied Acoustics2021183: 108297.
10 燕群, 薛东文, 高翔, 等. 飞机短舱声衬声学性能实验技术[J]. 航空学报202243(6): 526810.
  YAN Q, XUE D W, GAO X, et al. Acoustic performance experimental technology of aircraft nacelle acoustic liner[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526810 (in Chinese).
11 WATSON W, JONES M, PARROTT T. A quasi-3-D theory for impedance eduction in uniform grazing flow: AIAA-2005-2848[R]. Reston: AIAA, 2005.
12 WATSON W, JONES M. Impedance eduction in ducts with higher order modes and flow: AIAA-2009-3236[R]. Reston: AIAA, 2009.
13 WATSON W, JONES M G. Validation of a new procedure for impedance eduction in flow: AIAA-2010-3764[R]. Reston: AIAA, 2010.
14 WATSON W R, JONES M G. Impedance eduction in large ducts containing high-order modes and grazing flow: AIAA-2017-3183[R]. Reston: AIAA, 2017.
15 TROIAN R, DRAGNA D, BAILLY C, et al. Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow[J]. Journal of Sound and Vibration2017392: 200-216.
16 QIU X H, XIN B, JING X D. Straightforward impedance eduction method for non-grazing incidence wave with multiple modes?[J]. Journal of Sound Vibration2018432: 1-16.
17 JING X D, WANG Y J, DU L, et al. Impedance eduction experiments covering higher frequencies based on the multimodal straightforward method?[J]. Applied Acoustics2023206: 109327.
18 CHEN L F, DU L, WANG X Y, et al. A three-dimensional straightforward method for liner impedance eduction in uniform grazing flow?[J]. Journal of Sound and Vibration2020468: 115119.
19 JING X D, PENG S, WANG L X, et al. Investigation of straightforward impedance eduction in the presence of shear flow[J]. Journal of Sound Vibration2015335: 89-104.
20 WENG C Y, ENGHARDT L, BAKE F. Comparison of non-modal-based and modal-based impedance eduction techniques: AIAA-2018-3773?[R]. Reston: AIAA, 2018.
21 辛博. 切向流对声衬声阻抗的影响及声衬表面非稳定波机理的研究[D]. 北京: 北京航空航天大学, 2019: 57-60.
  XIN B. Investigation of grazing flow effects on the acoustic liner impedance and the mechanism of hydrodynamic instability over a liner[D]. Beijing: Beihang University, 2019: 57-60 (in Chinese).
22 MYERS M K. On the acoustic boundary condition in the presence of flow[J]. Journal of Sound and Vibration198071(3): 429-434.
23 季振林. 消声器声学理论与设计[M]. 北京: 科学出版社, 2015.
  JI Z L. Acoustic theory and design of muffler[M]. Beijing: Science Press, 2015 (in Chinese).
24 JONES M, WATSON W, PARROTT T. Benchmark data for evaluation of aeroacoustic propagation codes with grazing flow: AIAA-2005-2853[R]. Reston: AIAA, 2005.
文章导航

/