基于双层变权的异构数据融合及可靠性分析
收稿日期: 2024-02-18
修回日期: 2024-04-07
录用日期: 2024-05-07
网络出版日期: 2024-05-14
基金资助
国家重点研发计划(2021YFB1600601);研究生科研创新项目(2023YJSKC09014)
Heterogeneous data fusion and reliability analysis based on two-layer variable weights
Received date: 2024-02-18
Revised date: 2024-04-07
Accepted date: 2024-05-07
Online published: 2024-05-14
Supported by
National Key Research and Development Program of China(2021YFB1600601);Graduate Research Innovation Project(2023YJSKC09014)
随着航空产品可靠性不断提高,正常试验条件下难以收集到大样本的失效数据,导致仅依靠单一数据源进行可靠性分析的精度较低。对此,提出考虑双层变权的异构数据融合及可靠性分析方法。首先,通过异构数据的标准差度量其自身可信度,同时,引入基于模糊面积的支持度函数度量异构数据之间的相似度,从两方面确定异构先验数据的融合权重。进一步,建立双参数威布尔分布分析模型,利用Bayes理论融合异构数据,最终采用分步采样法对目标产品进行可靠性分析。结果表明:利用双层变权分析法确定融合权重,可有效缩减单一数据源存在的不确定性,提高可靠性评估的精度,具有重要的工程应用价值。
张帆 , 丛玮 , 田润操 , 王鹏 . 基于双层变权的异构数据融合及可靠性分析[J]. 航空学报, 2024 , 45(22) : 230297 -230297 . DOI: 10.7527/S1000-6893.2024.30297
Continuous improvements in reliability of aerospace products make it difficult to collect large samples of failure data under normal test conditions, resulting in low accuracy of reliability analysis relying only on a single data source. In this regard, a heterogeneous data fusion and reliability analysis method considering two-layer variable weight is proposed. First, the standard deviation of the heterogeneous data measures its own reliability, and meanwhile, the support function based on the fuzzy area is introduced to measure the similarity between the heterogeneous data, so as to determine the fusion weights of the heterogeneous a priori data from two aspects. Further, a two-parameter Weibull distribution analysis model is established, the heterogeneous data fused using Bayes theory, and the reliability analysis of the target product finally conducted with the stepwise sampling method. The results show that the determination of fusion weights adopting two-layer variable weight analysis can effectively reduce the uncertainty existing in a single data source and improve the accuracy of reliability assessment, exhibiting important engineering application value.
1 | LIU Y S, HONG S, ZIO E, et al. Integrated fault estimation and fault-tolerant control for a flexible regional aircraft[J]. Chinese Journal of Aeronautics, 2022, 35(3): 390-399. |
2 | 冯静. 小子样复杂系统可靠性信息融合方法与应用研究[D]. 长沙: 国防科技大学, 2004. |
FENG J. Research on reliability information fusion method and application of small sample complex system[D]. Changsha: National University of Defense Technology, 2004 (in Chinese). | |
3 | WANG L Z, PAN R, WANG X H, et al. A Bayesian reliability evaluation method with different types of data from multiple sources[J]. Reliability Engineering & System Safety, 2017, 167: 128-135. |
4 | 张帆, 田润操, 王鹏, 等. 考虑广义耦合的多应力加速寿命评估方法[J]. 系统工程与电子技术, 2023, 45(10): 3350-3361. |
ZHANG F, TIAN R C, WANG P, et al. Multi-stress accelerated life evaluation method considering generalized coupling[J]. Systems Engineering and Electronics, 2023, 45(10): 3350-3361 (in Chinese). | |
5 | 张帆,程伯晗,王鹏,等.二元共载系统退化相关的两阶段退化模型及可靠性分析[J]. 航空学报, 2024, 45(7): 229046. |
ZHANG F, CHENG B H, WANG P, et al. A two-stage degradation model and reliability analysis related to degradation of binary load-sharing systems[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 229046 (in Chinese). | |
6 | HAO Z P, ZENG S K, GUO J B. Bayesian method for system reliability assessment of overlapping pass/fail data[J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 208-214. |
7 | JIA X, GUO B. Inference on the reliability of Weibull distribution by fusing expert judgements and multiply Type-I censored data[C]∥2018 IEEE International Systems Engineering Symposium (ISSE). Piscataway: IEEE Press, 2018: 1-7. |
8 | 贾祥, 郭波. 融合专家经验和寿命试验数据的产品可靠性评估[J]. 控制与决策, 2022, 37(10): 2600-2608. |
JIA X, GUO B. Reliability evaluation for products by fusing expert knowledge and lifetime data[J]. Control and Decision, 2022, 37(10): 2600-2608 (in Chinese). | |
9 | 陈浩. 基于多源信息融合的典型卫星平台分系统剩余寿命预测研究[D]. 长沙: 国防科技大学, 2016. |
CHEN H. Research on residual life prediction for typical satellite platform subsystem based on multi-source information fusion [D]. Changsha: National University of Defense Technology, 2016 (in Chinese). | |
10 | PETTIT L I, YOUNG K D S. Bayesian analysis for inverse Gaussian lifetime data with measures of degradation[J]. Journal of Statistical Computation and Simulation, 1999, 63(3): 217-234. |
11 | 彭宝华, 周经伦, 金光. 综合多种信息的金属化膜电容器可靠性评估[J]. 强激光与粒子束, 2009, 21(8): 1271-1275. |
PENG B H, ZHOU J L, JIN G. Reliability assessment of metallized film capacitor using multiple reliability information sources[J]. High Power Laser and Particle Beams, 2009, 21(8): 1271-1275 (in Chinese). | |
12 | LIU S Q, CHEN H, GUO B, et al. Residual life estimation by fusing few failure lifetime and degradation data from real-time updating[C]∥2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). Piscataway: IEEE Press, 2017: 177-184. |
13 | 李博文, 贾祥, 赵骞, 等. 面向产品可靠性评估的退化和寿命数据分步融合方法[J]. 机械工程学报, 2022, 58(16): 430-440. |
LI B W, JIA X, ZHAO Q, et al. Phased fusion method of degradation and lifetime data for product reliability evaluation[J]. Journal of Mechanical Engineering, 2022, 58(16): 430-440 (in Chinese). | |
14 | LI D H, SHEN C, DAI X P, et al. Research on data fusion of adaptive weighted multi-source sensor[J]. Computers, Materials & Continua, 2019, 61(3): 1217-1231. |
15 | 杨军佳, 叶晨亮, 冯少华, 等. 多传感器数据加权融合方法[J]. 传感器与微系统, 2020, 39(4): 39-42. |
YANG J J, YE C L, FENG S H, et al. Method of data weighted fusion for multi-sensors[J]. Transducer and Microsystem Technologies, 2020, 39(4): 39-42 (in Chinese). | |
16 | 戴海发, 卞鸿巍, 王荣颖, 等. 一种改进的多传感器数据自适应融合方法[J]. 武汉大学学报(信息科学版), 2020, 45(10): 1602-1609. |
DAI H F, BIAN H W, WANG R Y, et al. An improved multi-sensor data adaptive fusion method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1602-1609 (in Chinese). | |
17 | 唐莉, 程世娟, 张晓洁, 等. 多源异构数据贝叶斯变权融合可靠性评估模型[J]. 重庆理工大学学报(自然科学), 2023, 37(2): 272-277. |
TANG L, CHENG S J, ZHANG X J, et al. Reliability evaluation model of multi-source heterogeneous data based on Bayesian variable weight fusion[J]. Journal of Chongqing University of Technology(Natural Science), 2023, 37(2): 272-277 (in Chinese). | |
18 | 邵松世, 刘海涛, 张志华. 融合多源先验信息的舰船备件可靠性评估[J]. 系统工程与电子技术, 2019, 41(12): 2905-2910. |
SHAO S S, LIU H T, ZHANG Z H. Reliability estimation for warship spares by fusing multi‐source prior information[J]. Systems Engineering and Electronics, 2019, 41(12): 2905-2910 (in Chinese). | |
19 | 丁瑞. 基于信息融合的卫星设备寿命预测研究[D]. 南京: 南京航空航天大学, 2016. |
DING R. Research on lifetime prediction method for satellite equipment based on information fusion theory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese). | |
20 | ALMALKI S J, NADARAJAH S. Modifications of the Weibull distribution: A review[J]. Reliability Engineering & System Safety, 2014, 124: 32-55. |
21 | 姜兴渭, 宋政吉, 王晓晨. 可靠性工程技术[M]. 哈尔滨:哈尔滨工业大学出版社: 2005. |
JANG X W, SONG Z J, WANG X C. Reliability engineering technology[M]. Harbin: Harbin Institute of Technology Press, 2005. (in Chinese). | |
22 | JIA X, NADARAJAH S, GUO B. Bayes estimation of P(Y < X) for the Weibull distribution with arbitrary parameters[J]. Applied Mathematical Modelling, 2017, 47: 249-259. |
23 | JIA X, GUO B. Reliability analysis for complex system with multi-source data integration and multi-level data transmission[J]. Reliability Engineering & System Safety, 2022, 217: 108050. |
24 | LIU Y S, HONG S, ZIO E, et al. Fault diagnosis and reconfigurable control for commercial aircraft with multiple faults and actuator saturation[J]. Aerospace, 2021, 8(4): 108. |
25 | 赵宇. 可靠性数据分析[M]. 北京: 国防工业出版社, 2011. |
ZHAO Y. Reliability data analysis [M]. Beijing: National Defense Industry Press, 2011 (in Chinese). | |
26 | 黄珂磊. 基于威布尔分布的轿车车身疲劳寿命稳健性优化设计[D]. 长春: 吉林大学, 2022. |
HUANG K L. Robust optimization design for fatigue life of a car body based on Weibull distribution[D]. Chang?chun: Jilin University, 2022 (in Chinese). | |
27 | CORLESS R M, GONNET G H, HARE D E G, et al. On the Lambert W function[J]. Advances in Computational Mathematics, 1996, 5(1): 329-359. |
28 | GIVENS G H, ROBACK P J. Logarithmic pooling of priors linked by a deterministic simulation model[J]. Journal of Computational and Graphical Statistics, 1999, 8(3): 452. |
29 | 王烨. 民机产品可靠性评估技术研究[D]. 南京: 南京航空航天大学, 2009. |
WANG Y. Research on reliability evaluation technology of civil aircraft products[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese). | |
30 | JIANG R, MURTHY D N P. A study of Weibull shape parameter: Properties and significance[J]. Reliability Engineering & System Safety, 2011, 96(12): 1619-1626. |
31 | 赵婉莹. Gamma函数有关不等式[D]. 西安: 西北大学, 2019. |
ZHAO W Y. Gamma function related inequality[D].Xi’an: Northwest University, 2019 (in Chinese). | |
32 | 蒋亚萍. 初等函数和一些特殊函数的高精度快速计算[D]. 淄博: 山东理工大学, 2017. |
JIANG Y P. High precision and fast calculation of elementary functions and some special functions[D]. Zibo: Shandong University of Technology, 2017 (in Chinese). | |
33 | JIA X, XI G G, NADARAJAH S. Correction factor for unbiased estimation of Weibull modulus by the linear least squares method?[J]. Metallurgical and Materials Transactions A, 2019, 50(6): 2991-3001. |
34 | GUO J, STEVEN LI Z, JUDY JIN J. System reliability assessment with multilevel information using the Bayesian melding method[J]. Reliability Engineering & System Safety, 2018, 170: 146-158. |
35 | YANG L C, ZHANG J G, GUO Y L, et al. Bayesian-based information extraction and aggregation approach for multilevel systems with multi-source data[J]. Journal of Systems Engineering and Electronics, 2017, 28(2): 385-400. |
/
〈 |
|
〉 |