基于气液耦合原理的飞机液压系统流体脉动消振器
收稿日期: 2024-01-17
修回日期: 2024-02-04
录用日期: 2024-04-19
网络出版日期: 2024-05-14
基金资助
国家自然科学基金(51975025);青年人才托举工程项目(2016QNRC001)
Attenuator for fluid pulsation in aircraft hydraulic systems based on gas⁃liquid coupling principle
Received date: 2024-01-17
Revised date: 2024-02-04
Accepted date: 2024-04-19
Online published: 2024-05-14
Supported by
National Natural Science Foundation of China(51975025);the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2016QNRC001)
飞机液压系统具有高可靠与高安全的需求,然而液压泵的输出流体脉动会导致管路振动,甚至元件损坏,是制约系统寿命和可靠性提升的瓶颈因素。机载液压系统对流体脉动抑制装置提出了宽频率范围、宽温度范围、高效减振、紧凑体积等要求,传统减振方式难以满足。从理论上给出了气液耦合消振数学原理,提出了一种宽频宽温的流体脉动消振器,用于飞机液压系统的脉动抑制应用。建立了该消振器的数学模型,研究了影响频率和温度范围的参数规律和设计准则,并讨论了安装位置的影响。研制了消振器样机,并针对航空液压泵开展了脉动抑制实验,验证了该消振器的宽频性能和宽温性能。实验结果表明,消振器在394.2~1 540 Hz频率范围内有消振效果,且插入损失最大可达29.6 dB。常温下,压力脉动幅值时域上最大可降低75.7%,频域上最大可降低89.3%;高温下,压力脉动幅值时域上最大可降低68.0%,频域上最大可降低88.0%。提出的设计方法与消振器模型的有效性和准确性得到了实验验证,研制的消振器装置在宽频、宽温范围内具有良好的压力脉动衰减性能。
徐远志 , 王任源 , 焦宗夏 . 基于气液耦合原理的飞机液压系统流体脉动消振器[J]. 航空学报, 2024 , 45(15) : 630180 -630180 . DOI: 10.7527/S1000-6893.2024.30180
As high demands of reliability and safety for aircraft hydraulic systems, the flow ripples caused by the aircraft hydraulic piston pump may lead to pipe vibration and components’ damage, which becomes the limitation of the high system reliability and long system lifetime. The attenuator utilized in the aircraft hydraulic system may demand wide frequency range, wide temperature range, effective attenuation effect and compact design, which are very challenging for the traditional attenuators. This paper presents the gas-liquid coupling principles theoretically, and proposes a novel fluid pulsation attenuator for wide range of frequencies and temperature. The mathematic model for the attenuator is established, and the design principles of the frequency range and temperature range are studied, and the positions of its installation are also studied. The prototype of attenuator is developed, and experiments are carried out on the aircraft hydraulic pump. The experimental results show that the attenuator has effective attenuation effect at frequency range from 394.2 Hz to 1 540 Hz, and the largest insertion loss value could reach up to 29.6 dB. At ambient temperature, the reduction rate could reach up to 75.7% in the time domain and 89.3% in the frequency domain; at high temperature, the reduction rate could reach up to 68.0% in time domain and 88.0% in frequency domain. The principles and model proposed in this work are proven to be effective and accurate, and the attenuation effects are validated in wide range of frequencies and temperature.
1 | 王占林. 飞机高压液压能源系统[M]. 北京:北京航空航天大学出版社, 2004: 1-12. |
WANG Z L. Aircraft high pressure hydraulic energy system[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2004: 1-12 (in Chinese). | |
2 | 中国航空工业总公司. 飞机液压管路系统设计、安装要求: [S]. 北京: 航空工业出版社, 1994: 5-16. |
AVIC. Hydraulic tubing systems, aircraft, design, installation requirements: [S]. Beijing: Aviation Industry Press, 1994: 5-16 (in Chinese). | |
3 | WANG Y, SHEN T S, TAN C S, et al. Research status, critical technologies, and development trends of hydraulic pressure pulsation attenuator[J]. Chinese Journal of Mechanical Engineering, 2021, 34(14): 1-17. |
4 | KOJIMA E, ICHIYANAGI T. Research on pulsation attenuation characteristics of silencers in practical fluid power systems[J]. International Journal of Fluid Power, 2000, 1(2): 29-38. |
5 | 欧阳小平, 李磊, 方旭, 等. 共振型液压脉动衰减器研究现状及展望[J]. 机械工程学报, 2015, 51(22): 168-175. |
OUYANG X P, LI L, FANG X, et al. Research status and prospects of resonant-type hydraulic pulsation attenuators[J]. Journal of Mechanical Engineering, 2015, 51(22): 168-175 (in Chinese). | |
6 | KELA L. Resonant frequency of an adjustable Helmholtz resonator in a hydraulic system [J]. Archive of Applied Mechanics, 2009, 79(12): 1115-1125. |
7 | SELAMET A, RADAVICH N S, DICKEYET N S, et al. Circular concentric Helmholtz resonators[J]. Journal of the Acoustical Society of America, 1997, 101(1): 41-51. |
8 | TANG P K, SIRIGANO W A. Theory of a generalized Helmholtz resonator[J]. Journal of Sound and Vibration, 1973, 26(2): 247-262. |
9 | 陈金华, 郭生荣, 卢岳良. 民机发动机驱动泵的长寿命设计技术[J]. 液压与气动, 2021, 45(8):160-170. |
CHEN J H, GUO S R, LU Y L. Long life design technology of civil aircraft engine driven pump[J]. Chinese Hydraulics & Pneumatics, 2021, 45(8): 160-170 (in Chinese). | |
10 | 王岩, 郝凤乾, 郭生荣, 等. 扩张室压力脉动衰减器的研究现状及发展趋势[J]. 机床与液压, 2015, 43(15):180-186. |
WANG Y, HAO F Q, GUO S R, et al. Research status and development trend of the expansion chamber pressure pulsation attenuator[J]. Machine Tool & Hydraulics, 2015, 43(15):180-186 (in Chinese). | |
11 | 柯兵, 卢岳良. 高压泵压力脉动抑制技术研究[J]. 液压与气动, 2013, 6(10): 90-95. |
KE B, LU Y L. Suppression technique of pressure pulsation for high-pressure pump[J]. Chinese Hydraulics & Pneumatics, 2013, 6(10): 90-95 (in Chinese). | |
12 | 郭生荣, 卢岳良. 液压能源系统压力脉动分析及抑制方法研究[J]. 液压与气动, 2011, 3(11): 49-51. |
GUO S R, LU Y L. Pressure fluctuation analysis and suppression of hydraulic energy system[J]. Chinese Hydraulics & Pneumatics, 2011, 3(11): 49-51 (in Chinese). | |
13 | MAREK K A, EARNHART N E, CUNEFARE K A. Model and analysis of a cylindrical in-line hydraulic suppressor with a solid compressible liner[J]. Journal of Sound and Vibration, 2014, 333(24): 6312-6331. |
14 | MAREK K A, GRUBER E R, CUNEFARE K A. Linear multimodal model for a pressurized gas bladder style hydraulic noise suppressor[J]. International Journal of Fluid Power, 2013, 14(2): 5-16. |
15 | 习毅, 李宝仁, 张迪嘉, 等. 串联囊式衰减器脉动抑制性能的高精度计算方法[J]. 液压与气动, 2023, 47(3): 100-107. |
XI Y, LI B R, ZHANG D J, et al. High-precision prediction method for a pressurized gas bladder style hydraulic noise suppressor[J]. Chinese Hydraulics & Pneumatics, 2023, 47(3): 100-107 (in Chinese). | |
16 | ICHIRYU K. Vibration damping method of oil hydraulic system by accumulator[J]. The Japan Society of the Mechanical Engineers, 1969, 12(53): 1110-1120. |
17 | ICHIRYU K. Development of accumulator for high frequency ripple absorption[J]. The Japan Society of the Mechanical Engineers, 1972, 15(88): 1215-1227. |
18 | EDGE K A, JOHNSTON D N. The impedance characteristics of fluid power components: relief valves and accumulators[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 1991, 205(1): 11-22. |
19 | 焦宗夏. 飞机液压能源管路系统的振动特性分析[J]. 北京航空航天大学学报, 1997, 23(3): 316-321. |
JIAO Z X. Vibration analysis of the aircraft fluid power and pipeline systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(3): 316-321 (in Chinese). | |
20 | 蔡亦钢. 流体传输管道动力学[M]. 杭州:浙江大学出版社, 1990: 26-43. |
CAI Y G. Fluid transmission pipeline dynamics[M]. Hangzhou: Zhejiang University Press, 1990: 26-43 (in Chinese). | |
21 | CHAI L Y, JIAO Z X, XU Y Z, et al. A compact design of pulsation attenuator for hydraulic pumps[C]∥ 2016 IEEE International Conference on Aircraft Utility Systems, 2016: 1111-1116. |
22 | WANG R Y, JIAO Z X, XU Y Z. Dynamic characteristics of bladder type attenuator for hydraulic systems[J/OL]. Journal of Vibration and Control, [2024-01-24]. . |
23 | ZIELKE W. Frequency-dependent friction in transient pipe flow[J]. Journal of Fluids Engineering, 1968, 90(1): 109-115. |
/
〈 |
|
〉 |