弯曲通道内爆震波传播特性实验研究
收稿日期: 2024-03-14
修回日期: 2024-04-02
录用日期: 2024-04-16
网络出版日期: 2024-04-25
基金资助
国家自然科学基金(52076181);陕西省创新能力支撑计划(2021KJXX-93)
Experimental study on propagation characteristics of stable detonation waves in curved channels
Received date: 2024-03-14
Revised date: 2024-04-02
Accepted date: 2024-04-16
Online published: 2024-04-25
Supported by
National Natural Science Foundation of China(52076181);Innovation Capability Support Program of Shaanxi Province(2021KJXX-93)
爆震波在弯曲通道内传播时,受通道曲率影响,在外壁面压缩与内壁面衍射共同作用下,爆震波锋面呈特定的弯曲型面,更易发生由于激波与化学反应区解耦造成的传播不稳定。为揭示爆震波在弯曲通道内的传播特性,采用C2H4和O2/N2为混合物,研究了当量比、稀释比对爆震波传播过程的影响。结果表明,在弯曲通道内,爆震波近贫燃极限与近富燃极限的熄爆机制存在差异;在富燃工况下,稀释比由0.4增大至0.6,爆震波可从规则反射传播模式转变至马赫杆增长型传播模式。通过将爆震波内壁面处的传播速度与0.8倍C-J速度进行对比,可将传播模态分为稳定传播模态、临界传播模态和不稳定传播模态;在贫燃工况下,弯曲通道内爆震波传播对稀释比变化更敏感;爆震波在封闭弯曲通道内稳定传播的临界条件是弯曲通道内壁面半径应为18.6~24.2倍的平均胞格尺寸。
曹力文 , 王可 , 徐子阳 , 苏晓宇 , 范玮 . 弯曲通道内爆震波传播特性实验研究[J]. 航空学报, 2024 , 45(24) : 130385 -130385 . DOI: 10.7527/S1000-6893.2024.30385
When detonation waves propagate in curved channels, they will be influenced by the curvature of the channel. Both the compression effect near the outer wall and the diffraction effect near the inner wall cause the detonation wave front to exhibit a certain degree of curvature, making the propagation more unstable due to decoupling between the shock wave and the chemical reaction. To clarify the propagation characteristics of detonation waves in curved channels, this study investigated the effects of the equivalence ratio and the dilution ratio on the propagation of stable detonation waves by using a mixture of ethylene, oxygen, and nitrogen. The results show that in curved channels, there are differences in the decoupling mechanism between the fuel-lean and fuel-rich conditions. Under fuel-rich conditions, as the dilution ratio varied from 0.4 to 0.6, detonation waves transitioned from the regular reflection mode to the Mach growth mode. By comparing the wave velocity on the inner wall with 0.8 times the C-J velocity, three propagation modes were observed after stable detonation waves entered the curved channel, i.e., a stable mode, a critical mode,and an unstable mode. Under fuel-lean conditions, the dilution ratio had a more significant impact on the detonation propagation mode. The critical condition of the stable detonation mode was clarified to be that the critical inner radius should be 18.6–24.2 times of the average cell sizes.
Key words: curved channel; detonation wave; equivalence ratio; dilution ratio; stable mode
1 | LEE J H S. The detonation phenomenon[M]. Cambridge: Cambridge University Press, 2008. |
2 | 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安: 西北工业大学出版社, 2005. |
YAN C J, FAN W. Principle and key technology of pulse detonation engine[M]. Xi’an: Northwestern Polytechnical University Press, 2005 (in Chinese). | |
3 | 王健平, 姚松柏. 连续爆轰发动机原理与技术[M]. 北京: 科学出版社, 2018. |
WANG J P, YAO S B. Principle and technology of continuous detonation engine[M]. Beijing: Science Press, 2018 (in Chinese). | |
4 | 刘卫东, 彭皓阳, 刘世杰, 等. 旋转爆震燃烧及应用研究进展[J]. 航空学报, 2023, 44(15): 528875. |
LIU W D, PENG H Y, LIU S J, et al. Research Progresses of rotating detonation combustion and its application[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528875 (in Chinese). | |
5 | KINDRACKI J, WOLAN′SKI P, GUT Z. Experiment research on the rotating detonation in gaseous fuels-oxygen mixtures [J]. Shock Waves, 2011, 21: 75-84. |
6 | 赵明皓, 王可, 王致程, 等. 点火方式对空桶型旋转爆震燃烧室起爆特性的影响[J]. 航空学报, 2022, 43(1): 124870. |
ZHAO M H, WANG K, WANG Z C, et al. Effects of ignition on initiation characteristics of hollow rotating detonation combustor[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124870 (in Chinese). | |
7 | YAMADA T, HAYASHI K, TSUBOI N, et al. Numerical analysis of threshold of limit detonation in rotating detonation engine[C]∥ 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
8 | BRAUN E, DUNN N, LU F. Testing of a continuous detonation wave engine with swirled injection[C]∥ 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010. |
9 | MEREDITH J, NG H D, LEE J H S. Detonation diffraction from an annular channel[J]. Shock Waves, 2010, 20(6): 449-455. |
10 | KUDO Y, NAGURA Y, KASAHARA J, et al. Oblique detonation waves stabilized in rectangular-cross-section bent tubes[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2319-2326. |
11 | NAKAYAMA H, MORIYA T, KASAHARA J, et al. Stable detonation wave propagation in rectangular-cross-section curved channels[J]. Combustion and Flame, 2012, 159(2): 859-869. |
12 | NAKAYAMA H, MORIYA T, KASAHARA J, et al. Front shock behavior of stable detonation waves propagating through rectangular cross-section curved channels[C]∥ 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
13 | NAKAYAMA H, KASAHARA J, MATSUO A, et al. Front shock behavior of stable curved detonation waves in rectangular-cross-section curved channels[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1939-1947. |
14 | XIAO Q, RADULESCU M I. Dynamics of hydrogen-oxygen-argon cellular detonations with a constant mean lateral strain rate[J]. Combustion and Flame, 2020, 215: 437-457. |
15 | XIAO Q, SOW A, MAXWELL B M, et al. Effect of boundary layer losses on 2D detonation cellular structures[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3641-3649. |
16 | XIAO Q, RADULESCU M I. Role of instability on the limits of laterally strained detonation waves[J]. Combustion and Flame, 2020, 220: 410-428. |
17 | PAN Z H, CHEN K P, QI J, et al. The propagation characteristics of curved detonation wave: Experiments in helical channels[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3585-3592. |
18 | PAN Z H, QI J, PAN J F, et al. Fabrication of a helical detonation channel: Effect of initial pressure on the detonation propagation modes of ethylene/oxygen mixtures[J]. Combustion and Flame, 2018, 192: 1-9. |
19 | 袁雪强, 蒋露欣, 张多, 等. 爆震波通过环形通道传播模式试验研究[J]. 火箭推进, 2021, 47(6): 101-110. |
YUAN X Q, JIANG L X, ZHANG D, et al. Experimental study on propagation mode of detonation wave in annular channel[J]. Journal of Rocket Propulsion, 2021, 47(6): 101-110 (in Chinese). | |
20 | WANG Z C, WANG K, ZHAO M H, et al. Experimental investigation on the propagation characteristics of detonations in a semi-confined straight channel[J]. Experimental Thermal and Fluid Science, 2021, 123: 110329. |
21 | KNYSTAUTAS R, LEE J H, GUIRAO C M. The critical tube diameter for detonation failure in hydrocarbon-air mixtures[J]. Combustion and Flame, 1982, 48: 63-83. |
22 | MOEN I O, DONATO M, KNYSTAUTAS R, et al. The influence of confinement on the propagation of detonations near the detonability limits[J]. Symposium (International) on Combustion, 1981, 18(1): 1615-1622. |
/
〈 |
|
〉 |