空空导弹过失速翻转后向发射方法
收稿日期: 2023-11-16
修回日期: 2024-02-28
录用日期: 2024-04-07
网络出版日期: 2024-04-10
Air-to-air missile post-stall flip backward launch method
Received date: 2023-11-16
Revised date: 2024-02-28
Accepted date: 2024-04-07
Online published: 2024-04-10
为缩短近距格斗导弹越肩发射的响应时间,实现空空导弹在近距格斗时对于后方目标的快速打击,提出了一种利用导弹在大/超大攻角下的静不稳定性,并辅助喷流直接力控制、末段主动舵偏控制的空空导弹快速后向发射方法。为研究所提出的新发射方法中预置舵偏、喷流直接力、末段主动舵偏控制策略的影响,发展了基于动态嵌套网格的耦合主动舵偏控制策略的高精度计算流体力学/飞行动力学数值模拟方法。数值模拟结果表明,所提出的方法可以在1.53 s内完成导弹的快速重新定向并在翻转末段保持姿态稳定可控。新方法可以将越肩发射的重新定向时间缩短至传统方法的约1/10。
关键词: 空空导弹; 越肩发射; 过失速重新定向; 气动/运动/控制耦合; 动态嵌套网格
刘程鹏 , 宋文萍 , 高昌昊 , 韩少强 , 王跃 , 韩忠华 . 空空导弹过失速翻转后向发射方法[J]. 航空学报, 2024 , 45(20) : 129880 -129880 . DOI: 10.7527/S1000-6893.2024.29880
To shorten the response time of air-to-air missile and realize rapid attack on backward target in close combat, a rapid backward-launching method of short-range air-to-air missile is developed, which takes advantage of the static instability of missile at large/very large angle of attack, auxiliary jet direct force control and active rudder deflection control. To simulate the influence of preset rudder deflection, jet direct force and active rudder deflection control strategy in the new launching method, a high-precision computational fluid dynamics/flight dynamics numerical simulation method coupling with active rudder deflection control strategy is developed based on the dynamic Chimera grid. Numerical simulation results show that the proposed method can achieve rapid reorientation of the missile in 1.53 s, and maintain a stable and controllable attitude at the end of the flipping phase. The new method can reduce the response time of over-the-shoulder launch to about 1/10 of the traditional method.
1 | 张俊宝, 张蓬蓬. 美国未来空空导弹发展研究与思考[J]. 电光与控制, 2022, 29(3): 65-68. |
ZHANG J B, ZHANG P P. Research and thinking on future air-to-air missile development of America[J]. Electronics Optics & Control, 2022, 29(3): 65-68 (in Chinese). | |
2 | 樊会涛, 闫俊. 自主化: 机载导弹重要的发展方向[J]. 航空兵器, 2019, 26(1): 1-10. |
FAN H T, YAN J. The important development direction of airborne missile: Autonomization[J]. Aero Weaponry, 2019, 26(1): 1-10 (in Chinese). | |
3 | 张红, 李锋. 第四代战斗机武器火控系统总体技术分析[J].电光与控制, 2000(3): 33-41. |
ZHANG H, LI F. The overall technical analysis on the fourth generation fighters’ fire control system[J]. Aero Weaponry, 2000(3): 33-41 (in Chinese). | |
4 | 高劲松, 孙隆和. 越肩发射和其它攻击方式[J]. 电光与控制, 2000(3): 52-55. |
GAO J S, SUN L H. Over the shoulder and other attack modes[J]. Electronics Optics & Control, 2000(3): 52-55 (in Chinese). | |
5 | 谢岚风, 陈军, 焦璐, 等. 未来空战全域火力场研究[J].航空学报, 2024, 45(5):529699. |
XIE L F, CHEN J, JIAO L, et al. All-domain fire field in future air combat[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(5):529699 (in Chinese). | |
6 | 樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报, 2022, 43(10): 527397. |
FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527397 (in Chinese). | |
7 | 高劲松, 陈哨东, 朱荣刚, 等. 越肩发射的研究现状和发展[J]. 火力与指挥控制, 2005, 30(8): 1-5. |
GAO J S, CHEN S D, ZHU R G, et al. Development on over the shoulder[J]. Fire Control and Command Control, 2005, 30(8): 1-5 (in Chinese). | |
8 | 关为群, 殷兴良. 导弹大攻角高机动飞行特性分析与仿真[J]. 现代防御技术, 2006, 34(4): 43-47. |
GUAN W Q, YIN X L. Analysis and simulation of missile’s high maneuver flying at high angles of attack[J]. Modern Defence Technology, 2006, 34(4): 43-47 (in Chinese). | |
9 | 郭建国, 彭谦, 周敏. 直接力/气动力复合控制技术发展综述[J]. 航空兵器, 2022, 29(1): 1-13. |
GUO J G, PENG Q, ZHOU M. Review on development of direct force/aerodynamic force compound control technology[J]. Aero Weaponry, 2022, 29(1): 1-13 (in Chinese). | |
10 | THUKRAL A, INNOCENTI M. A sliding mode missile pitch autopilot synthesis for high angle of attack maneuvering[J]. IEEE Transactions on Control Systems Technology, 1998, 6(3): 359-371. |
11 | KIM Y, KIM B S, PARK J. Aerodynamic pitch control design for reversal of missile’s flight direction[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(9): 1519-1527. |
12 | 张赢, 刘超峰. 导弹自翻转的超大攻角非定常气动特性研究[J]. 弹箭与制导学报, 2015, 35(5): 112-118. |
ZHANG Y, LIU C F. Unsteady aerodynamics characteristics on self-turning of missile at extra-wide angle-of-attack[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(5): 112-118 (in Chinese). | |
13 | 高昌昊, 宋文萍, 韩少强, 等. 空空导弹过失速重新定向技术研究[J]. 空天防御, 2022, 5(3): 17-26. |
GAO C H, SONG W P, HAN S Q, et al. Research on poststall re-orientation technology of air-to-air missile[J]. Air & Space Defense, 2022, 5(3): 17-26 (in Chinese). | |
14 | 高昌昊. 导弹快速翻转的气动/运动耦合高精度数值模拟方法及控制策略研究[D]. 西安: 西北工业大学, 2023: 55-58. |
GAO C H. Research on high-accurate aerodynamic/kinematic coupling numerical simulation method and control strategy of missile fast re-orientation[D]. Xi’an: Northwestern Polytechnical University, 2023: 55-58 (in Chinese). | |
15 | 金一欢, 武宏程, 余志凯, 等. 抛接定向越肩发射方案与控制技术研究[J]. 航空兵器, 2021, 28(3): 59-64. |
JIN Y H, WU H C, YU Z K, et al. Research on tossing-orientation scheme of over-the-shoulder launch and control technology[J]. Aero Weaponry, 2021, 28(3): 59-64 (in Chinese). | |
16 | 李政, 于剑桥, 赵新运. 空空导弹敏捷转弯固定时间收敛滑模控制[J]. 航空学报, 2023, 44(8): 327262. |
LI Z, YU J Q, ZHAO X Y. Fixed-time convergent sliding mode control for agile turn of air-to-air missiles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 327262 (in Chinese). | |
17 | 李斌, 郭正玉. 基于放宽静稳定度空空导弹重定向研究[J]. 航空兵器, 2023, 30(6): 37-43. |
LI B, GUO Z Y. Study on heading reversal of air-to-air missile based on relaxed static stability[J]. Aero Weaponry, 2023, 30(6): 37-43 (in Chinese). | |
18 | 秦汉, 刘金, 陈兰, 等. 一种快速自翻转导弹布局: CN201910550840.8[P]. 2019-10-08. |
QIN H, LIU J, CHEN L, et al. A Fast Self-Flip Layout of Missile: CN201910550840.8[P]. 2019-10-08 (in Chinese). | |
19 | STEGER J L, DOUGHERTY F C, BENEK J A. A chimera grid scheme[J]. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 1983(5): 59-69. |
20 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥ 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
21 | MONTA W J. Supersonic aerodynamic characteristics of a Sparrow 3 type missile model with wing controls and comparison with existing tail-control results[R]. Reston: AIAA, 1977. |
22 | HEIM E. CFD wing/pylon/finned store mutual interference wind tunnel experiment[R]. Arnold AFB, TN: Arnold Engineering Development Center. 1991: 10-45. |
23 | HEMSCH M J. 战术导弹空气动力学[M]. 洪金森, 杨其德, 毛国良, 等, 译. 北京: 宇航出版社, 1999: 39-43. |
HEMSCH M J. Tactical missile aerodynamics?[M]. HONG J S, YANG Q D, MAO G L, et al, translated. Beijing: China Astronautic Publishing House, 1999: 39-43 (in Chinese). | |
24 | GAO C H, SONG W P, HAN S Q, et al. High-accurate nu-merical simulation for vortex flow over a slender missile at high angle of attack[C]∥ 33th ICAS Congress 2022. Stockholm: ICAS, 2022: 555. |
25 | 高建军. 空空导弹直接力控制技术[J]. 战术导弹控制技术, 2011(3): 24-30. |
GAO J J. The reaction jet technology of air-to-air missiles[J].Control Technology of Tactical Missile, 2011(3): 24-30 (in Chinese). |
/
〈 |
|
〉 |