城市低空无人机飞行计划协同推演与优化调配方法
收稿日期: 2023-12-25
修回日期: 2024-02-20
录用日期: 2024-03-19
网络出版日期: 2024-03-25
基金资助
国家重点研发计划(2022YFB4300905);国家自然科学基金(52002178);江苏省自然科学基金(BK20190416)
Cooperative deduction and optimal allocation method for urban low-altitude UAV flight plan
Received date: 2023-12-25
Revised date: 2024-02-20
Accepted date: 2024-03-19
Online published: 2024-03-25
Supported by
National Key Research and Development Program of China(2022YFB4300905);National Natural Science Foundation of China(52002178);Natural Science Foundation of Jiangsu Province(BK20190416)
针对复杂城市环境下无人机集群飞行面临的多机耦合制约、冲突风险频发和运行效率低下等难题,提出了城市低空无人机飞行计划协同推演与最优调配方法。首先,面向无人机“个体”,考虑无人机与城市静态环境目标之间的冲突问题,构建了基于概率风险地图的无人机三维路径规划方法,实现了无人机飞行计划“初始生成”;然后,面向无人机“群体”,考虑无人机与无人机之间的冲突问题,构建了无人机飞行计划多类型冲突协同推演模型,设计并度量了冲突发生率、冲突风险等级和栅格占用比例等冲突特征指标;最后,设计了调整飞行路径、飞行速度、飞行时间等多元化调配策略,建立了基于多元策略自适应配置的无人机飞行计划优化调配模型,验证了所提方法的优化性能和参数敏感性,实现了不同交通密度场景下城市低空无人机飞行计划的优化调配。实验表明,所提方法可在有效控制风险成本和时间成本的基础上,将飞行计划冲突降低96.2%,对于40架以内的无人机运行场景,可得到完全无冲突的飞行计划,而100架以内的无人机最低飞行冲突解脱率可控制在95%以上。所提方法是科学有效的,可为复杂城市低空无人机飞行活动安全和高效管理提供理论基础和方法指导。
谢华 , 韩斯特 , 尹嘉男 , 纪晓辉 , 杨逸晨 . 城市低空无人机飞行计划协同推演与优化调配方法[J]. 航空学报, 2024 , 45(19) : 330018 -330018 . DOI: 10.7527/S1000-6893.2024.30018
To address the problems of multiple aircraft coordination constraints, frequent conflict risks, and operational inefficiencies faced by UAV cluster flights in complex urban environments, a collaborative deduction and optimal allocation method for urban low-altitude UAV flight plan is proposed. Firstly, for the UAV “individual”, the conflict between UAVs and urban static environment targets is considered, and a three-dimensional path planning method based on probabilistic risk maps is constructed to achieve the initial generation of UAV flight plan. Then, for the UAV “group”, considering the conflict between UAVs, a multi-type conflict cooperative deduction model for UAV flight plan is constructed, and the conflict characteristic indicators such as conflict occurrence rate, conflict risk level, and grid occupancy ratio are designed and metricized. Finally, diversified allocation strategies such as adjusting flight paths, flight speeds, and flight times are designed. Based on the multi-strategy self-adaptive configuration, an optimization and allocation model is established. The optimization performance and parameter sensitivity of the proposed method are verified, demonstrating the optimization performance and parameter sensitivity of urban low-altitude flight plans under different traffic density scenarios. Experiments show that the proposed method can reduce flight plan conflicts by 96.2% on the basis of effectively controlling the risk cost and time cost, completely conflict free flight plan can be obtained for UAV operation scenarios with less than 40 UAVs, and the minimum flight conflict resolution rate for UAVs with less than 100 UAVs can be controlled above 95%. The proposed method is scientific and effective, and can provide a theoretical basis and methodological guidance for safe and efficient management of low-altitude UAV flight activities in complex cities.
1 | 刚桂虎, 赵显. 小型旋翼无人机在未来城市军事行动应用中潜力评估[J]. 国防科技, 2017, 38(2): 33-37. |
GANG G H, ZHAO X. Evaluation on potential of small rotor UAV in future urban military operation[J]. National Defense Science & Technology, 2017, 38(2): 33-37 (in Chinese). | |
2 | OUTAY F, MENGASH H A, ADNAN M. Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: recent advances and challenges[J]. Transportation Research Part A: Policy and Practice, 2020, 141: 116-129. |
3 | MA Z Y, CHEN J. Adaptive path planning method for UAVs in complex environments[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 115(2): 103133. |
4 | 谢华, 苏方正, 尹嘉男, 等. 低空无人机飞行冲突分类探测与差异解脱方法研究[J]. 安全与环境学报, 2023, 23(9): 3131-3142. |
XIE H, SU F Z, YIN J N, et al. Research on classified detection and differential resolution method for UAV flight conflicts in low altitude airspace[J]. Journal of Safety and Environment, 2023, 23(9): 3131-3142 (in Chinese). | |
5 | ALLIGNOL C, BARNIER N, DURAND N, et al. Assessing the robustness of a UAS detect & avoid algorithm[C]∥12th USA/Europe Air Traffic Management Research and Development Seminar. 2017. |
6 | 付其喜, 梁晓龙, 张佳强, 等. 双层优化的多无人机合作式冲突探测与解脱[J]. 哈尔滨工业大学学报, 2020, 52(4): 74-83. |
FU Q X, LIANG X L, ZHANG J Q, et al. Cooperative conflict detection and resolution for multiple UAVs using two-layer optimization[J]. Journal of Harbin Institute of Technology, 2020, 52(4): 74-83 (in Chinese). | |
7 | 管祥民, 吕人力. 基于满意博弈论的复杂低空飞行冲突解脱方法[J]. 航空学报, 2017, 38(): 721475. |
GUAN X M, LYU R L. Conflict resolution method of complex low-altitude flight based on satisfactory game theory[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(Sup 1): 721475 (in Chinese). | |
8 | ZHANG N, ZHANG M C, LOW K H. 3D path planning and real-time collision resolution of multirotor drone operations in complex urban low-altitude airspace[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103123. |
9 | THANH H L N N, PHI N N, HONG S K. Simple nonlinear control of quadcopter for collision avoidance based on geometric approach in static environment[J]. International Journal of Advanced Robotic Systems, 2018, 15(2): 172988141876757. |
10 | 黄洋, 汤俊, 老松杨. 基于复杂网络的无人机飞行冲突解脱算法[J]. 航空学报, 2018, 39(12): 322222. |
HUANG Y, TANG J, LAO S Y. UAV flight conflict resolution algorithm based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 322222 (in Chinese). | |
11 | 谢华, 苏方正, 尹嘉男, 等. 复杂低空无人机飞行冲突网络建模与精细管理[J]. 航空学报, 2023, 44(18): 328226. |
XIE H, SU F Z, YIN J N, et al. Network modeling and refined management of UAV flight conflicts in complex low altitude airspace[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328226 (in Chinese). | |
12 | JOVER J, BERMúDEZ A, CASADO R. A tactical conflict resolution proposal for U-space Zu airspace volumes[J]. Sensors, 2021, 21(16): 5649. |
13 | YANG J, YIN D, NIU Y F, et al. Distributed cooperative onboard planning for the conflict resolution of unmanned aerial vehicles[J]. Journal of Guidance Control Dynamics, 2019, 42(2): 272-283. |
14 | 袁梦婷, 时宏伟. 基于ADS-B的无人机感知与规避蚁群算法模型[J]. 西北工业大学学报, 2021, 39(4): 761-769. |
YUAN M T, SHI H W. An ant colony algorithm model for UAV sense and avoid based on ADS-B[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 761-769 (in Chinese). | |
15 | 李宪强, 马戎, 张伸, 等. 蚁群算法的改进设计及在航迹规划中的应用[J]. 航空学报, 2020, 41(): 724381. |
LI X Q, MA R, ZHANG S, et al. Improved design of ant colony algorithm and its application in route planning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(Sup 2): 724381 (in Chinese). | |
16 | 胡莘婷, 吴宇. 面向城市飞行安全的无人机离散型多路径规划方法[J]. 航空学报, 2021, 42(6): 324383. |
HU X T, WU Y. Risk-based discrete multi-path planning method for UAVs in urban environments[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324383 (in Chinese). | |
17 | 张宏宏, 甘旭升, 李双峰, 等. 复杂低空环境下考虑区域风险评估的无人机航路规划[J]. 仪器仪表学报, 2021, 42(1): 257-266. |
ZHANG H H, GAN X S, LI S F, et al. UAV route planning considering regional risk assessment under complex low altitude environment[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 257-266 (in Chinese). | |
18 | 张宏宏, 甘旭升, 辛建霖, 等. 基于合作博弈的多机冲突解脱算法[J]. 北京航空航天大学学报, 2022, 48(5): 863-871. |
ZHANG H H, GAN X S, XIN J L, et al. Multi-aircraft conflict resolution algorithm based on cooperative game[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 863-871 (in Chinese). | |
19 | ISUFAJ R, OMERI M, PIERA M A. Multi-UAV conflict resolution with graph convolutional reinforcement learning[J]. Applied Sciences, 2022, 12(2): 610. |
20 | TONY L A, GHOSE D, CHAKRAVARTHY A. Correlated-equilibrium-based unmanned aerial vehicle conflict resolution[J]. Journal of Aerospace Information Systems, 2022, 19(4): 283-304. |
21 | LI A, HANSEN M, ZOU B. Traffic management and resource allocation for UAV-based parcel delivery in low-altitude urban space[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103808. |
22 | 谢华,韩斯特,尹嘉男,等.复杂城市低空无人机安全风险评估与三维路径规划[J].安全与环境学报, 2024, 24(7): 2490-2507. |
XIE H, HAN ST, YIN J N, et al. Safety risk assessment and three-dimensional path planning for low-altitude UAVs in complex cities[J]. 2024, 24(7): 2490-2507 (in Chinese). |
/
〈 |
|
〉 |