综述

大推力液氧甲烷火箭发动机技术研究进展

  • 谭永华
展开
  • 航天推进技术研究院,西安 710100
.E-mail: tanyhcasc@163.com

收稿日期: 2023-10-09

  修回日期: 2023-10-17

  录用日期: 2024-03-12

  网络出版日期: 2024-03-25

基金资助

液体火箭发动机技术重点实验室基金(614270419)

Research progress in high thrust liquid oxygen methane rocket engine technology

  • Yonghua TAN
Expand
  • Academy of Aerospace Propulsion Technology,Xi’an 710100,China
E-mail: tanyhcasc@163.com

Received date: 2023-10-09

  Revised date: 2023-10-17

  Accepted date: 2024-03-12

  Online published: 2024-03-25

Supported by

Foundation of Key Laboratory of Science and Technology on Liquid Rocket Engine(614270419)

摘要

液氧甲烷具有来源丰富、冷却性能好、燃烧温度低、不易结焦和积炭等优势,在可重复使用发动机上具有广阔的应用前景,从而使得高性能大推力液氧甲烷火箭发动机成为未来深空探测等重大航天任务的热点研究方向。通过计算对比分析了以液氧甲烷、液氧煤油和液氧液氢为推进剂的3种发动机性能参数的优劣性,结果表明大推力液氧甲烷火箭发动机在可重复使用一级主动力发动机上具有优势。总结了国内外大推力液氧甲烷火箭发动机的研制历程,论述了大推力液氧甲烷火箭发动机研制所涉及到的六大关键技术和中国在各项技术上的研制进展,相应地提出了中国发展大推力液氧甲烷火箭发动机亟待解决的主要问题,展望了未来中国可重复使用大推力液氧甲烷火箭发动机实现工程应用的前景。

本文引用格式

谭永华 . 大推力液氧甲烷火箭发动机技术研究进展[J]. 航空学报, 2024 , 45(11) : 529690 -529690 . DOI: 10.7527/S1000-6893.2024.29690

Abstract

Liquid oxygen and methane, with its many advantages such as having rich sources and low temperature of combustion, exhibiting good cooling performance, and being hard to coke with little carbon accumulation, has broad application prospects in reusable engines, making high-performance and high thrust liquid oxygen methane rocket engines a hot research direction for major aerospace tasks such as deep space exploration in the future. The performance parameters of liquid oxygen methane, liquid oxygen kerosene, and liquid oxygen liquid hydrogen propellants are calculated and compared, and results show that high thrust liquid oxygen methane rocket engines are superior in reusable primary propulsion engines. This paper summarizes the development process of high thrust liquid oxygen methane rocket engines at home and abroad, and introduces the six key technologies involved in the development of high thrust liquid oxygen methane rocket engines and the development progress of various technologies in China. Correspondingly, the main problems that urgently need to be solved in the development of high thrust liquid oxygen methane rocket engines in China are identified. The future engineering applications of reusable high thrust liquid oxygen methane rocket engines in China are discussed.

参考文献

1 李湘宁, 刘宇. 重型火箭下面级发动机基本参数分析[J]. 航空动力学报200924(4): 938-944.
  LI X N, LIU Y. Basic parameters analysis of first stage engine system for heavy lift vehicle[J]. Journal of Aerospace Power200924(4): 938-944 (in Chinese).
2 谭永华. 大推力液体火箭发动机研究[J]. 宇航学报201334(10): 1303-1308.
  TAN Y H. Research on large thrust liquid rocket engine[J]. Journal of Astronautics201334(10): 1303-1308 (in Chinese).
3 孙宏明. 液氧/甲烷发动机评述[J]. 火箭推进200632(2): 23-31.
  SUN H M. Review of liquid oxygen/methane rocket engine[J]. Journal of Rocket Propulsion200632(2): 23-31 (in Chinese).
4 STUBER E, PRASADH N, EDWARDS S, et al. Hydrocarbon liquid rocket engine technology impact forecasting[C]∥ Proceedings of the AIAA SPACE 2012 Conference & Exposition. Reston: AIAA, 2012.
5 HURLBERT E, MCMANAMEN J, STUDAK J. Advanced development of a compact 5-15 lbf Lox/Methane thruster for an integrated reaction control and main engine propulsion system[C]∥ Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011.
6 王海燕, 高玉闪, 邢理想. 全流量补燃循环液氧甲烷发动机系统方案研究[J]. 载人航天201925(2): 236-242.
  WANG H Y, GAO Y S, XING L X. Research on schemes of full flow staged combustion cycle liquid oxygen/liquid methane engine system[J]. Manned Spaceflight201925(2): 236-242 (in Chinese).
7 BURKHARDT H, SIPPEL M, HERBERTZ A, et al. Effects of the choice between kerosene and methane on size and performance of reusable liquid booster stages[C]∥ Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2003.
8 HAESELER D, MADING C, GOTZ A, et al . Recent developments for future launch vehicle LOX/HC rocket engines[C]∥ The 6th International Symposium Propulsion for Space Transportation of the XXIst Century, 2002
9 《世界导弹与航天发动机大全》编委会.世界导弹与航天发动机大全[M]. 北京:军事科学出版社, 1999: 47-126.
  Editorial Committee of an Encyclopedia of World Missile and Space Engines. An encyclopedia of world missile and space engines[M]. Beijing: Military Science Publishing House, 1999:47-126 (in Chinese).
10 齐环环, 韩虹. SpaceX“超重-星舰” 运输系统研制进展[J]. 国际太空2022(6): 36-39.
  QI H H, HAN H. Development progress of SpaceX “overweight-starship” transportation system[J]. Space International2022(6): 36-39 (in Chinese).
11 张黎辉, 凌桂龙, 段娜, 等. 氢氧全流量补燃循环发动机主要参数优化分析[J]. 航空动力学报200621(5): 937-942.
  ZHANG L H, LING G L, DUAN N, et al. Optimization analysis of the main parameters of hydrogen-oxygen FFSC[J]. Journal of Aerospace Power200621(5): 937-942 (in Chinese).
12 巩岩博, 郑大勇. 全流量补燃循环发动机推力调节方案研究[J].航天推进与动力202038(1): 48-58.
  GONG Y B, ZHENG D Y. Research on thrust regulation scheme for full flow combustion cycle engines[J]. Aerospace Propulsion and Dynamics202038 (1): 48-58 (in Chinese).
13 周宁. 重型补燃循环氢氧发动机变推力系统方案研究[D]. 北京: 中国航天科技集团公司第一研究院, 2018.
  ZHOU N. Research on the variable thrust scheme of heavy staged combustion cycle LOX/LH2 engine[D].Beijing: The First Academy of China Aerospace Science and Technology Corporation, 2018 (in Chinese).
14 originBlue[EB/OL]..
15 黄浩然.美国商业航天公司液氧甲烷发动机研制进展[J].中国航天2023(7):13-19.
  HUANG H R. Development progress of liquid oxygen methane engine in American commercial aerospace company [J]. China Aerospace2023(7): 13-19 (in Chinese).
16 KLEPIKOV I A, KATORGIN B I, CHVANOV V K. The new generation of rocket engines, operating by ecologically safe propellant “liquid oxygen and liquefied natural gas(methane)”[C]∥ 48th International Astronautical Congress, 1997: 1-9.
17 王珺, 张卫红, 石文靓, 等. 60t级液氧/甲烷发动机起动过程建模与仿真[J]. 火箭推进201339(5): 16-22.
  WANG J, ZHANG W H, SHI W J, et al. Modeling and simulation of start-up process of 60 t class LOX/methane liquid rocket engine[J]. Journal of Rocket Propulsion201339(5): 16-22 (in Chinese).
18 高玉闪, 张晓军, 邢理想, 等. 我国液氧甲烷发动机技术发展概述[J]. 中国航天2023(5): 16-23.
  GAO Y S, ZHANG X J, XING L X, et al. Review of technology development for Chinese LOX/methane engines[J]. Aerospace China2023(5): 16-23 (in Chinese).
19 苏展, 高玉闪, 张晓光, 等. 液氧/甲烷发动机再生冷却和膜冷却传热数值研究[J]. 载人航天202228(4): 455-461.
  SU Z, GAO Y S, ZHANG X G, et al. Numerical study on regenerative cooling and film cooling heat transfer of liquid oxygen/methane engine[J]. Manned Spaceflight202228(4): 455-461 (in Chinese).
20 张小平, 周亚强, 严伟. 液氧甲烷发动机发展现状[J]. 载人航天202329(1): 126-133.
  ZHANG X P, ZHOU Y Q, YAN W. Current state of LOX/methane engine development[J]. Manned Spaceflight202329(1): 126-133 (in Chinese).
21 张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005: 29-58, 248-254.
  ZHANG G T. High pressure staged combustion LOX/Kerosene rocket engine[M]. Beijing: National Defense Industry Press, 2005: 29-58, 248-254 (in Chinese).
22 王春民, 张晓光, 高玉闪, 等. 液氧煤油补燃发动机起动过程氧预压泵加速起旋方案研究[J]. 推进技术202041(7): 1441-1448.
  WANG C M, ZHANG X G, GAO Y S, et al. Investigation on schemes for accelerating oxidizer boost pump during start-up of LOX/kerosene staged combustion rocket engine[J]. Journal of Propulsion Technology202041(7): 1441-1448 (in Chinese).
23 胡伟, 张青松. 对全流量补燃循环发动机系统的研究与分析[J]. 航空动力学报200520(2): 328-333.
  HU W, ZHANG Q S. Research and analysis of the full-flow staged combustion cycle rocket[J]. Journal of Aerospace Power200520(2): 328-333 (in Chinese).
24 邢理想, 苏展, 张航, 等. 全流量补燃循环液氧甲烷发动机推力调节方案研究[J]. 宇航总体技术20237(4): 33-40.
  XING L X, SU Z, ZHANG H, et al. Study on the control scheme of full-flow staged combustion cycle liquid oxygen/liquid methane engine[J]. Astronautical Systems Engineering Technology20237(4): 33-40 (in Chinese).
25 黄永华, 陈国邦. 低温流体热物理性质[M]. 2版. 北京: 国防工业出版社, 2014100-145, 428- 460.
  HUANG Y H, CHEN G B. Thermophysical properties of cryogenic fluids[M]. 2nd ed. Beijing: National Defense Industry Press, 2014: 100-145, 428-460 (in Chinese).
26 DAVIS J A, CAMPBELL R L. Advantages of a full-flow staged combustion cycle engine system: AIAA-1997-3318[R]. Reston: AIAA, 1997.
27 BINDER M P. A transient model of the RL10A-3-3A rocket engine: AIAA-1995-2968[R]. Reston: AIAA, 1995.
28 WHITTEN C A. Correction procedures for variable intensity neutron time-of-flight measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment1991309(1-2): 264-274.
29 REN X W, CHEN H Y, LI P, et al. Numerical simulation of filling process of cryogenic propellants with inert gas purge[J]. Thermal Science and Engineering Progress202229: 101197.
30 任孝文, 周晨初, 陈宏玉, 等. 基于准一维模型的低温流体预冷充填管路仿真分析[J]. 火箭推进202349(2): 83-93.
  REN X W, ZHOU C C, CHEN H Y, et al. Analysis on pre-cooling filling pipeline of cryogenic fluid base on quasi-one-dimensional model[J]. Journal of Rocket Propulsion202349(2): 83-93 (in Chinese).
31 张晓光,任孝文,高玉闪,等. 基于Kriging参数优化的液氧系统预冷充填仿真[J/OL].航空动力学报, (2023-05-09) [2024-03-12]. .
  ZHANG X G, REN X W, GAO Y S, et al. Simulation of pre-cooling filling process of liquid oxygen system based on parameter optimization of Kriging[J/OL]. Journal of Aerospace Power, (2023-05-09) [2024-03-12]. (in Chinese).
32 JUE F, KUCK F. Space Shuttle Main Engine (SSME) options for the Future Shuttle: AIAA-2002-3758[R]. Reston: AIAA, 2002.
33 MEISL J. Life-cycle-cost considerations for launch vehicle liquid propellant rocket engine: AIAA-1986-1408[R]. Reston: AIAA, 1986.
34 MATTHEW J C, JAMES R H, VIGOR Y. Liquid-propellant rocket engine throttling: A comprehensive review: AIAA-2009-5135[R]. Reston: AIAA, 2009.
35 PéREZ-ROCA S, LANGLOIS N, MARZAT J, et al. Derivation and analysis of a state-space model for transient control of liquid-propellant rocket engines[C]∥ 2018 9th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2018: 58-67.
36 PéREZ-ROCA S, MARZAT J, FLAYAC é, et al. An MPC approach to transient control of liquid-propellant rocket engines[J]. IFAC-PapersOnLine201952(12): 268-273.
37 翟一帆, 罗巧军, 黄仕启. 液体火箭发动机推力调节PID控制研究[C]∥ 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集, 2017: 69-76.
  ZHAI Y F, LUO Q J, HUANG S Q. Research on PID control for thrust regulation of liquid rocket engines[C]∥ The 2nd JCAP and 38th APTIS Technical Conference, 2017: 69-76 (in Chinese).
38 薛薇, 胡慧, 武小平. 大推力氢氧补燃发动机推力闭环控制设计[J]. 计算机测量与控制201927(6): 90-94.
  XUE W, HU H, WU X P. Thrust closed-loop control of the large scale expendable liquid rocket propulsion[J]. Computer Measurement & Control201927(6): 90-94 (in Chinese).
39 张万旋, 翟一帆. 膨胀循环发动机全局快速非奇异终端滑模控制[J]. 导弹与航天运载技术2019(6): 47-51.
  ZHANG W X, ZHAI Y F. Global fast non-singular terminal sliding mode controller for expander cycle rocket engine[J]. Missiles and Space Vehicles2019(6): 47-51 (in Chinese).
40 VAN HOOSER K P, BRADLEY D P. Space shuttle main engine—The relentless pursuit of improvement: AIAA-2011-7159[R]. Reston: AIAA, 2011.
41 DAVIS J, CAMPBELL R. Advantages of a full-flow staged combustion cycle engine system[C]∥ Proceedings of the 33rd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1997.
42 KUMADA N, OGAWARA A, MANAKO H, et al. Highly reliable design approaches for next booster engine LE-X: AIAA-2010-6853[R]. Reston: AIAA, 2010.
43 KANMURI A, WAKAMATSU Y, SHIMURA T,et al. Start transient analysis of turbopump-fed LOX/LH2 rocket engine (LE-5): N86-19371[R]. 1983.
44 孙纪国, 王珏. 高混合比火炬式电点火器试验研究[J]. 推进技术200021(1): 33-35.
  SUN J G, WANG J. Experimental study on high mixture ratio torch ignitor[J]. Journal of Propulsion Technology200021(1): 33-35 (in Chinese).
45 杨进慧, 王朝晖, 左安军, 等. 氢氧火炬式电点火器燃烧流动分析[J]. 导弹与航天运载技术2019(3): 45-48.
  YANG J H, WANG Z H, ZUO A J, et al. Combustion flow analysis of the hydrogen-oxygen torch igniter[J]. Missiles and Space Vehicles2019(3): 45-48 (in Chinese).
46 郭田莉, 孙慧娟. 火炬式电点火系统点火能量的正交试验研究[J]. 导弹与航天运载技术2016(2): 90-93, 96.
  GUO T L, SUN H J. Orthogonal testing study on ignition energy of a torch ignition system[J]. Missiles and Space Vehicles2016(2): 90-93, 96 (in Chinese).
47 ALLIOT P, DELANGE J F, LEKEUX A, et al. The VINCI propulsion system: New steps toward qualification: AIAA-2014-3478[R]. Reston: AIAA, 2014.
48 WOOD B K. Propulsion for the 21st Century-RS-68: AIAA-2002-4324[R]. Reston: AIAA, 2002.
49 BYRD T D, KYNARD M H. Progress on the J-2X upper stage engine for the Ares I crew launch vehicle and the Ares V cargo launch vehicle[C]∥ Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007.
50 HIDEO S, AKIHIDE K, KOICHI O. Automatic thrust and mixture ratio control of LE-X: AIAA-2008-4666[R]. Reston: AIAA, 2008.
51 GERZER R. Space physiology at the German aerospace center DLC[C]∥ 2nd China-Germany Workshop on Microgravity Science, 2002.
52 GRADL P R, TEASLEY T W, PROTZ C S, et al. Advancing GRCop-based bimetallic additive manufacturing to optimize component design and applications for liquid rocket engines[C]∥ Proceedings of the AIAA Propulsion and Energy 2021 Forum. Reston: AIAA, 2021.
53 杜大华, 李斌. 液体火箭发动机结构动力学设计关键技术综述[J]. 航空学报202344(10): 027554.
  DU D H, LI B. Key structural dynamic design technologies in liquid rocket engines: Review[J]. Acta Aeronautica et Astronautica Sinica202344(10): 027554 (in Chinese).
54 金路, 苗旭升, 王晓锋, 等. 轴承径向游隙对刚性转子不平衡响应的影响研究[J]. 轴承2019(5): 41-43, 48.
  JIN L, MIAO X S, WANG X F, et al. Investigation on influence of bearing radial clearance on unbalance response of rigid rotor[J]. Bearing2019(5): 41-43, 48 (in Chinese).
55 毛凯, 苗旭升, 陈晖, 等. 液体火箭发动机涡轮泵用轴承寿命试验研究[J]. 火箭推进201642(5): 24-27.
  MAO K, MIAO X S, CHEN H, et al. Experimental research on bearing life of turbopump in liquid rocket engine[J]. Journal of Rocket Propulsion201642(5): 24-27 (in Chinese).
56 张超杰, 张文虎, 苗旭升, 等. Ag和MoS2镀层对低温涡轮泵球轴承动态行为及功耗的影响[J]. 轴承2023(11): 7-15.
  ZHANG C J, ZHANG W H, MIAO X S, et al. Effect of Ag and MoS2 coatings on dynamic behavior and power loss of ball bearings for cryogenic turbopumps[J]. Bearing2023(11): 7-15 (in Chinese).
57 杨宝锋, 贾少锋, 李斌, 等. 大偏心及大扰动下涡轮泵密封转子动力特性[J]. 火箭推进201945(6): 1-9.
  YANG B F, JIA S F, LI B, et al. Investigation on rotordynamic characteristics of a turbopump seal under large eccentricities and disturbances[J]. Journal of Rocket Propulsion201945(6): 1-9 (in Chinese).
58 WALKER B, BAUMGARTNER E. Comparison of nonlinear smoothers and nonlinear estimators for rocket engine health monitoring[C]∥ Proceedings of the 26th Joint Propulsion Conference. Reston: AIAA, 1990.
59 DUYAR A, ELDEM Y, MERRILL W, et al. A simplified dynamic model of space shuttle main engine[C]∥ 1991 American Control Conference. Piscataway: IEEE Press, 1991: 2094-2099.
60 吴建军, 朱晓彬, 程玉强, 等. 液体火箭发动机智能健康监控技术研究进展[J]. 推进技术202243(1): 7-19.
  WU J J, ZHU X B, CHENG Y Q, et al. Research progress of intelligent health monitoring technology for liquid-propellant rocket engines[J]. Journal of Propulsion Technology202243(1): 7-19 (in Chinese).
61 NORMAN A, MARAM J, COLEMAN P, et al. Development of a real-time model based safety monitoring algorithm for the SSME[C]∥ Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992.
62 NORMAN A. Rocketdyne safety algorithm: Space shuttle main engine fault detection: NASA-CR-195356[R]. Washington, D.C.: NASA, 1994.
63 HAWMAN M. Health monitoring system for the SSME - Program overview[C]∥ Proceedings of the 26th Joint Propulsion Conference. Reston: AIAA, 1990.
64 TULPULE S, GALINAITIS W. Health monitoring system for the SSME-fault detection algorithms[C]∥ Proceedings of the 26th Joint Propulsion Conference. Reston: AIAA, 1990.
65 YU D R, WANG J B. Leak fault detection of liquid rocket engine based on strong tracking filter[J]. Journal of Propulsion and Power200218(2): 280-283.
66 王红建, 王超, 施蔚, 等. 蠕变-疲劳耦合作用下推力室内壁结构损伤分析[J/OL]. 航空动力学报, (2022-11-03) [2024-03-12]. .
  WANG H J, WANG C, SHI W, et al. Structural damage analysis of thrust chamber wall under creep-fatigue coupling[J/OL]. Journal of Aerospace Power, (2022-11-03) [2024-03-12]. (in Chinese).
67 黄峻峰, 贺尔铭, 易金翔, 等. 再生冷却推力室热机疲劳寿命预测研究[J]. 西北工业大学学报202240(4): 723-731.
  HUANG J F, HE E M, YI J X, et al. Research on thermomechanical fatigue life prediction of regenerative cooling thrust chamber[J]. Journal of Northwestern Polytechnical University202240(4): 723-731 (in Chinese).
68 黄朝晖, 袁奇, 张弘斌, 等. 某型火箭发动机涡轮转子流热固耦合强度及疲劳寿命分析[J]. 西安交通大学学报202256(8): 73-84.
  HUANG Z H, YUAN Q, ZHANG H B, et al. Analysis of fluid-thermal-solid coupling strength and fatigue life of a certain rocket engine turbine rotor[J]. Journal of Xi’an Jiaotong University202256(8): 73-84 (in Chinese).
文章导航

/