基于多分辨率SPH-FEM耦合方法的鸟撞问题数值模拟
收稿日期: 2024-01-05
修回日期: 2024-01-30
录用日期: 2024-02-23
网络出版日期: 2024-03-14
基金资助
陕西省重点研发计划(2022SF-151);太仓市科技计划(TC2022JC10)
Numerical simulation of bird strike based on multi-resolution SPH-FEM coupling method
Received date: 2024-01-05
Revised date: 2024-01-30
Accepted date: 2024-02-23
Online published: 2024-03-14
Supported by
Key Research and Development Plan of Shaanxi Province(2022SF-151);Science and Technology Plan of Taicang City(TC2022JC10)
本文针对航空发动机风扇叶片鸟撞问题的数值模拟方法研究,提出了一种考虑有限单元自适应生成的多分辨率SPH-FEM耦合方法。首先,新方法通过在FEM单元内部插值点处设置一组背景粒子,克服了传统SPH-FEM耦合方法在耦合界面处对模型离散尺度的一致性要求;其次,新方法在传统有限元算法的基础上加入单元自适应生成算法和无反射边界条件,将计算过程中对模型所有单元的求解转变为对关键区域的部分单元进行求解,降低了计算成本。文章应用所建立的新耦合方法开展了多结构鸟体撞击航空发动机风扇叶片的数值模拟研究,分析了撞击的动态响应,揭示了叶片受鸟撞过程的损伤机理,对航空发动机风扇叶片抗鸟撞设计和提高飞行安全性具有重要意义。
马明瑞 , 陈福振 , 严红 , 刘凡 . 基于多分辨率SPH-FEM耦合方法的鸟撞问题数值模拟[J]. 航空学报, 2024 , 45(21) : 230116 -230116 . DOI: 10.7527/S1000-6893.2024.30116
To study the problem of bird strike on aero-engine fan blades, this paper proposes a multi-resolution SPH-FEM coupling method considering adaptive generation of finite elements. Firstly, by setting a group of background particles at the interpolation points inside the FEM elements, the new method overcame the problem of consistency requirement of model discrete scale at the coupling interface in the traditional SPH-FEM coupling method. Secondly, by adding an element adaptive generation algorithm and applying the non-reflecting boundary condition, the new method changed the calculation range from all elements to elements at critical areas, reducing computational costs. Using this new coupling method, this study conducted numerical simulations of bird strikes on areo-engine fan blades, analyzed the dynamic response during the impact process, and revealed the damage mechanisms of fan blades under the condition of bird strikes. It is of important significance for the design of bird strike resistance for aero-engine fan blades and the improvement of flight safety.
Key words: aero-engine; fan blade; SPH-FEM; bird strike; flight safety
1 | DOLBEER R A, BEGIER M J, MILLER P R, et al. Wildlife strikes to civil aircraft in the United States: 1990-2022: 29[R]. Federal Aviation Administration National Wildlife Strike Database, 2023. |
2 | BARBER J P, TAYLOR H R, WILBECK J S. Bird impact forces and pressures on rigid and compliant targets: AFFDL-TR-77-60?[R]. Air Force Flight Dynamics Laboratory, Air Force Systems Command, 1978. |
3 | WILBECK J S. Impact behavior of low strength projectiles: AFML-TR-77-134[R]. Air Force Materials Laboratory, 1977. |
4 | EDGE C H, DEGRIECK J. Derivation of a dummy bird for analysis and test of airframe structures[C]∥Bird Strike Committee, 1999. |
5 | 刘军, 李玉龙, 郭伟国, 等. 鸟体本构模型参数反演I: 鸟撞平板试验研究[J]. 航空学报, 2011, 32(5): 802-811. |
LIU J, LI Y L, GUO W G, et al. Parameters inversion on bird constitutive model part I: Study on experiment of bird striking on plate[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 802-811 (in Chinese). | |
6 | 刘军, 李玉龙, 石霄鹏, 等. 鸟体本构模型参数反演Ⅱ: 模型参数反演研究[J]. 航空学报, 2011, 32(5): 812-821. |
LIU J, LI Y L, SHI X P, et al. Parameters inversion on bird constitutive model partⅡ: Study on model parameters inversion[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 812-821 (in Chinese). | |
7 | CHEN X P, YIN B, TANG Z B, et al. Understanding the impact response of bird strikes on engine blades using a novel wedge-Hopkinson bar system[J]. International Journal of Impact Engineering, 2023, 182: 104782. |
8 | STOLL F, BROCKMAN R, STOLL F, et al. Finite element simulation of high-speed soft-body impacts[C]∥38th Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1997. |
9 | AIROLDI A, CACCHIONE B. Modelling of impact forces and pressures in Lagrangian bird strike analyses[J]. International Journal of Impact Engineering, 2006, 32(10): 1651-1677. |
10 | CERQUAGLIA M L, DELIéGE G, BOMAN R, et al. Reprint of: The particle finite element method for the numerical simulation of bird strike[J]. International Journal of Impact Engineering, 2017, 110: 72-84. |
11 | LANGRAND B, BAYART A S, CHAUVEAU Y, et al. Assessment of multi-physics FE methods for bird strike modelling-Application to a metallic riveted airframe[J]. International Journal of Crashworthiness, 2010, 7(4): 415-428. |
12 | HANSSEN A G, GIRARD Y, OLOVSSON L, et al. A numerical model for bird strike of aluminium foam-based sandwich panels[J]. International Journal of Impact Engineering, 2006, 32(7): 1127-1144. |
13 | GOYAL V, HUERTAS C, BORRERO J, et al. Robust bird-strike modeling based on ALE formulation using LS-DYNA[C]∥47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006. |
14 | GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389. |
15 | LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013. |
16 | AUDIC S, BERTHILLIER M, BONINI J, et al. Prediction of bird impact in hollow fan blades[C]∥36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2000. |
17 | LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Validation of available approaches for numerical bird strike modeling tools[J]. International Review of Mechanical Engineering (IREME), 2007, 1(4): 380-389. |
18 | RYABOV A A, ROMANOV V I, KUKANOV S S, et al. Fan blade bird strike analysis using Lagrangian, SPH and ALE approaches[C]∥In 6th European LS-DYNA Users Conference. 2007. |
19 | VIGNJEVIC R, OR?OWSKI M, DE VUYST T, et al. A parametric study of bird strike on engine blades[J]. International Journal of Impact Engineering, 2013, 60: 44-57. |
20 | HEDAYATI R, ZIAEI-RAD S. A new bird model and the effect of bird geometry in impacts from various orientations[J]. Aerospace Science and Technology, 2013, 28(1): 9-20. |
21 | HEDAYATI R, SADIGHI M, MOHAMMADI-AGHDAM M. On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies[J]. Aerospace Science and Technology, 2014, 32(1): 260-266. |
22 | JOHNSON G R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations[J]. Nuclear Engineering and Design, 1994, 150(2-3): 265-274. |
23 | JOHNSON G R, STRYK R A, BEISSEL S R. SPH for high velocity impact computations[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 347-373. |
24 | JOHNSON G R, STRYK R A, BEISSEL S R, et al. An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation[J]. International Journal of Impact Engineering, 2002, 27(10): 997-1013. |
25 | 张志春, 强洪夫, 高巍然. 一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用[J]. 爆炸与冲击, 2011, 31(3): 243-249. |
ZHANG Z C, QIANG H F, GAO W R. A new coupled SPH-FEM algorithm andits application to impact dynamics[J]. Explosion and Shock Waves, 2011, 31(3): 243-249 (in Chinese). | |
26 | 张志春, 强洪夫, 高巍然. SPH-FEM接触算法在冲击动力学数值计算中的应用[J]. 固体力学学报, 2011, 32(3): 319-324. |
ZHANG Z C, QIANG H F, GAO W R. Application of SPH-FEM contact algorithm in impact dynamics simulation[J]. Chinese Journal of Solid Mechanics, 2011, 32(3): 319-324 (in Chinese). | |
27 | FERNáNDEZ-MéNDEZ S, BONET J, HUERTA A. Continuous blending of SPH with finite elements[J]. Computers & Structures, 2005, 83(17-18): 1448-1458. |
28 | OTT F, SCHNETTER E. A modified SPH approach for fluids with large density differences[J]. ArXiv e-Prints, 2003: physics/0303112. |
29 | JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. |
30 | ZIENKIEWICZ O. The finite element method[M]. London: McGraw Hill, 1991. |
31 | MONAGHAN J J. Particle methods for hydrodynamics[J]. Computer Physics Reports, 1985, 3(2): 71-124. |
32 | 刘晶波, 李彬. 三维黏弹性静-动力统一人工边界[J]. 中国科学E辑, 2005, 35(9): 966-980. |
LIU J B, LI B. Three-dimensional viscoelastic static-dynamic unified artificial boundary[J]. Scientia Sinica (Technologica), 2005, 35(9): 966-980 (in Chinese). | |
33 | LIU J W, LIU C, ZHANG X F, et al. Research on the penetration characteristics of elliptical cross-section projectile into semi-infinite metal targets[J]. International Journal of Impact Engineering, 2023, 173: 104438. |
34 | 张伟, 魏刚, 肖新科. 2A12铝合金本构关系和失效模型[J]. 兵工学报, 2013, 34(3): 276-282. |
ZHANG W, WEI G, XIAO X K. Constitutive relation and fracture criterion of 2A12 aluminum alloy[J]. Acta Armamentarii, 2013, 34(3): 276-282 (in Chinese). | |
35 | MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399-406. |
36 | LATHA P, JAYA PRAKASH D. Fan blade containment capability of hybrid fancase system[J]. Journal of Aerospace Engineering & Technology, 2019, 9(1): 15-22. |
/
〈 |
|
〉 |