变弯度机翼外形与拓扑分步优化设计
收稿日期: 2023-12-18
修回日期: 2024-01-16
录用日期: 2024-03-05
网络出版日期: 2024-03-14
基金资助
航空科学基金(2020Z006054002);辽宁省自然科学基金(2023-MS-243)
Stepwise optimal design for shape and topology of variable camber wing
Received date: 2023-12-18
Revised date: 2024-01-16
Accepted date: 2024-03-05
Online published: 2024-03-14
Supported by
Aeronautical Science Foundation of China(2020Z006054002);Natural Science Foundation of Liaoning Province(2023-MS-243)
针对变弯度机翼气动优化和轻量化的设计要求,提出了气动外形与结构拓扑分步优化设计。该设计以机翼气动优化的计算结果为基础,通过变密度法建立机翼前后缘拓扑优化设计结构。提出了一种6参数描述机翼外形的参数化方法,通过B样条曲线进行局部修正,采用遗传算法对气动外形进行优化。基于优化后的机翼气动外形采用变密度拓扑优化算法建立RAMP插值模型,设计前后缘拓扑结构与机翼展向模型。通过3D打印技术对前后缘变弯度机翼拓扑结构进行加工并开展变形试验。气动仿真结果表明,6参数变弯度翼型的变形区间最大且外形连续光滑。与基础机翼相比,优化后的机翼在起飞过程中升阻比提高了35.7%,巡航状态下升阻比提高4.4%。通过变形试验结果得出前缘拓扑结构等效偏转角为9.37°、后缘拓扑结构等效偏转角为9.18°,偏转效果良好,验证了气动外形与拓扑分步优化设计的可行性。
王巍 , 王浩 , 周艾 , 冯贺 . 变弯度机翼外形与拓扑分步优化设计[J]. 航空学报, 2024 , 45(18) : 129990 -129990 . DOI: 10.7527/S1000-6893.2024.29990
A stepwise optimal design of the aerodynamic shape and structural topology is proposed to meet the requirements of aerodynamic optimization and lightweight design for variable camber wings. Based on the results of aerodynamic optimization, we establish the topology optimal structure of the leading and trailing edge of the wing using the variable density method. A six-parameter parameterization method is proposed to describe the wing shape, local correction is performed using the B-spline curve, and the aerodynamic shape is optimized by the genetic algorithm. Based on the optimized aerodynamic shape of the wing, we employ a variable density topology optimization algorithm to establish an RAMP interpolation model, and design the leading and trailing edge topology structures and wing spanwise models. Additionally, using 3D printing technology, we process the topology structure of the variable camber wing with the leading and trailing edge, and conduct deformation tests. The aerodynamic simulation results show that the deformation range of a six parameter variable curvature airfoil is the largest with a continuous and smooth shape. Compared with the basic airfoil, the lift-drag ratio of the optimized wing increases by 35.7% and 4.4% during take-off and cruise, respectively. The deformation test results show that the equivalent deflection angles of the leading edge and trailing edge are 9.37° and 9.18°, respectively, with significant deflection effect, verifying the feasibility of stepwise optimization for the aerodynamic shape and topology.
1 | 周文雅, 张宗宇, 王晓明, 等. 机翼中小尺度主动变形研究进展及关键技术[J]. 机械工程学报, 2021, 57(2): 121-138. |
ZHOU W Y, ZHANG Z Y, WANG X M, et al. Research progress and key techniques of active morphing wing at medium and small scales[J]. Journal of Mechanical Engineering, 2021, 57(2): 121-138 (in Chinese). | |
2 | TSUSHIMA N, TAMAYAMA M. Recent researches on morphing aircraft technologies in Japan and other countries[J]. Mechanical Engineering Reviews, 2019, 6(2): 19-00197. |
3 | 倪迎鸽, 杨宇. 自适应机翼翼型变形的研究现状及关键技术[J]. 航空工程进展, 2018, 9(3): 297-308. |
NI Y G, YANG Y. Research on the status and key technology in morphing airfoil of adaptive wings[J]. Advances in Aeronautical Science and Engineering, 2018, 9(3): 297-308 (in Chinese). | |
4 | LI D C, ZHAO S W, RONCH A DA, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100: 46-62. |
5 | FINCHAM J H S, FRISWELL M I. Aerodynamic optimisation of a camber morphing aerofoil[J]. Aerospace Science and Technology, 2015, 43: 245-255. |
6 | DAYYANI I, KHODAPARAST H H, WOODS B K, et al. The design of a coated composite corrugated skin for the camber morphing airfoil[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(13): 1592-1608. |
7 | VASISTA S, DE GASPARI A, RICCI S, et al. Compliant structures-based wing and wingtip morphing devices[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(2): 311-330. |
8 | VASISTA S, RIEMENSCHNEIDER J, VAN DE KAMP B, et al. Evaluation of a compliant droop-nose morphing wing tip via experimental tests[J]. Journal of Aircraft, 2017, 54(2): 519-534. |
9 | 梁煜, 单肖文. 大型民机翼型变弯度气动特性分析与优化设计[J]. 航空学报, 2016, 37(3): 790-798. |
LIANG Y, SHAN X W. Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 790-798 (in Chinese). | |
10 | KLIMCZYK W A, GORAJ Z J. Analysis and optimization of morphing wing aerodynamics[J]. Aircraft Engineering and Aerospace Technology, 2019, 91(3): 538-546. |
11 | KIM D, LEE J, NOMURA T, et al. Topology optimization of functionally graded anisotropic composite structures using homogenization design method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113220. |
12 | CAO S Y, WANG H B, TONG J B, et al. A hole nucleation method combining BESO and topological sensitivity for level set topology optimization[J]. Materials, 2021, 14(9): 2119. |
13 | XU A P, LIU Y S, WANG H, et al. Topology optimization of TWB autodoor based on variable density and variable thickness methods[C]∥ International Conference on Advanced Technology of Design and Manufacture (ATDM 2010), 2010: 84-88. |
14 | 陈小前, 赵勇, 霍森林, 等. 多尺度结构拓扑优化设计方法综述[J]. 航空学报, 2023, 44(15): 528863. |
CHEN X Q, ZHAO Y, HUO S L, et al. A review of topology optimization design methods for multi-scale structures[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528863 (in Chinese). | |
15 | TEIMOURI M, ASGARI M. Developing an efficient coupled function-based topology optimization code for designing lightweight compliant structures using the BESO algorithm[J]. Optimization and Engineering, 2024, 25(1): 575-603. |
16 | LIN H D, XU A, MISRA A, et al. An ANSYS APDL code for topology optimization of structures with multi-constraints using the BESO method with dynamic evolution rate (DER-BESO)[J]. Structural and Multidisciplinary Optimization, 2020, 62(4): 2229-2254. |
17 | WINYANGKUL S, WANSASEUB K, SLEESONGSOM S, et al. Ground structures-based topology optimization of a morphing wing using a metaheuristic algorithm[J]. Metals, 2021, 11(8): 1311. |
18 | 寇鑫, 葛文杰. 基于多点驱动式柔性机构的变形翼后缘拓扑优化[J]. 机械强度, 2018, 40(4): 983-986. |
KOU X, GE W J. Topology optimization of morphing wing trailing edge based on multi-points driving compliant mechanism[J]. Journal of Mechanical Strength, 2018, 40(4): 983-986 (in Chinese). | |
19 | 赵立杰, 李凯, 常莹莹, 等. 复合材料机翼前缘柔性机构拓扑优化设计[J]. 机械设计与制造, 2020(9): 75-79. |
ZHAO L J, LI K, CHANG Y Y, et al. Topology optimization for compliant mechanism of composite wing leading edge[J]. Machinery Design & Manufacture, 2020(9): 75-79 (in Chinese). | |
20 | 胡嘉欣, 芮姝, 高瑞朝, 等. 飞行器结构布局与尺寸混合优化方法[J]. 航空学报, 2022, 43(5): 225363. |
HU J X, RUI S, GAO R C, et al. Hybrid optimization method for structural layout and size of flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 225363 (in Chinese). | |
21 | 王志刚, 杨宇, 段世慧. 基于参数化分析的柔性后缘优化设计[J]. 航空学报, 2017, 38(S1): 721562. |
WANG Z G, YANG Y, DUAN S H. Optimal design of flexible trailing edge based on parametric analysis[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 721562 (in Chinese). | |
22 | GOMES P, PALACIOS R. Aerodynamic-driven topology optimization of compliant airfoils[J]. Structural and Multidisciplinary Optimization, 2020, 62(4): 2117-2130. |
23 | GOMES P, PALACIOS R. Aerostructural topology optimization using high fidelity modeling[J]. Structural and Multidisciplinary Optimization, 2022, 65(5): 137. |
24 | 聂瑞. 变体机翼结构关键技术研究[D]. 南京: 南京航空航天大学, 2018: 101-109. |
NIE R. Research on key technologies of morphing wing structures[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 101-109 (in Chinese). | |
25 | 保女子, 彭叶辉, 冯和英, 等. 四参数变弯度翼型的气动特性分析与优化设计[J]. 机械科学与技术, 2023, 42(2): 309-320. |
BAO N Z, PENG Y H, FENG H Y, et al. Aerodynamic characteristic analysis and optimization design of four-parameter variable camber airfoil[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 309-320 (in Chinese). |
/
〈 |
|
〉 |