电子电气工程与控制

基于深度强化学习和信息论的多智能体通信方法

  • 高兵 ,
  • 张哲婕 ,
  • 邹启杰 ,
  • 刘治国 ,
  • 赵锡玲
展开
  • 1.大连大学 信息工程学院,大连 116622
    2.大连大学 通信与网络重点实验室,大连 116622

收稿日期: 2023-11-10

  修回日期: 2023-12-06

  录用日期: 2024-02-28

  网络出版日期: 2024-03-14

基金资助

国家自然科学基金(61673084);2021年辽宁省教育厅项目(LJKZ1180)

Multi-agent communication cooperation based on deep reinforcement learning and information theory

  • Bing GAO ,
  • Zhejie ZHANG ,
  • Qijie ZOU ,
  • Zhiguo LIU ,
  • Xiling ZHAO
Expand
  • 1.School of Information Engineering Faculty,Dalian University,Dalian  116622,China
    2.Key Laboratory of Communication & Network,Dalian University,Dalian  116622,China

Received date: 2023-11-10

  Revised date: 2023-12-06

  Accepted date: 2024-02-28

  Online published: 2024-03-14

Supported by

National Natural Science Foundation of China(61673084);2021 Liaoning Provincial Department of Education Project(LJKZ1180)

摘要

在合作环境的多智能体系统中,有效地进行显式通信可以提高智能体间的协作能力。但现有的通信策略往往将智能体的局部观测值直接作为通信内容,且通信对象通常是按照某种拓扑结构固定的,其结果一方面难以适应任务和环境变化而引起通信过程的不确定性;另一方面,通信对象和通信信息缺乏侧重点会造成通信带宽的资源浪费导致通信效率较低。针对上述多智能体通信协同问题,提出一种融合深度强化学习和信息论的方法来实现多智能体自适应显式通信机制。所提方法采用先验网络使智能体动态地选择通信的对象;再利用互信息的约束和信息瓶颈理论有效过滤冗余信息;最后,汇总自身及接收到的信息推理出更有效的通信内容。通过合作导航和交通路口实验环境证明了该方法对比其他方法提高了多智能体系统的交互效率和合作稳定性。

本文引用格式

高兵 , 张哲婕 , 邹启杰 , 刘治国 , 赵锡玲 . 基于深度强化学习和信息论的多智能体通信方法[J]. 航空学报, 2024 , 45(18) : 329862 -329862 . DOI: 10.7527/S1000-6893.2024.29862

Abstract

Effective explicit communication among agents in a multi-agent system can increase their capacity for cooperation. However, existing communication strategies typically use the agents’ local observations as the communication content directly, and the communication objects are usually fixed with a certain topology structure. On the one hand, these strategies are difficult to adapt to changes in tasks and environments, which causes uncertainty in the communication process. On the other hand, the communication objects and contents lack focus, resulting in some resource waste and lower communication effectiveness. To address the issues above, this paper proposes an approach that integrates deep reinforcement learning and information theory to realize multi-agent adaptive communication mechanism. The approach uses a prior network to allow the agent to dynamically choose the object, then utilizes the constraints of mutual information and the information bottleneck theory to effectively filter redundant information. Finally, the agent summarizes its own and received information to extract more effective information. The method proposed is demonstrated to improve the stability and interaction efficiency of multi-agent systems compared to other methods through cooperative navigation and traffic junction environments.

参考文献

1 GRONAUER S, DIEPOLD K. Multi-agent deep reinforcement learning: A survey[J]. Artificial Intelligence Review202255(2): 895-943.
2 HUANG S Y, ZHANG H B, HUANG Z Y. Multi-UAV collision avoidance using multi-agent reinforcement learning with counterfactual credit assignment[DB/OL]. arXiv preprint: 2204.08594, 2022.
3 魏琳慧, 刘国文, 刘雨, 等. 基于深度强化学习的卫星互联网路由优化研究[J]. 天地一体化信息网络20223(3): 65-71.
  WEI L H, LIU G W, LIU Y, et al. Research on routing optimization in satellite Internet based on deep reinforcement learning[J]. Space-Integrated-Ground Information Networks20223(3): 65-71 (in Chinese).
4 CHEN J Y, MA R D, OYEKAN J. A deep multi-agent reinforcement learning framework for autonomous aerial navigation to grasping points on loads[J]. Robotics and Autonomous Systems2023167: 104489.
5 KRAEMER L, BANERJEE B. Multi-agent reinforcement learning as a rehearsal for decentralized planning[J]. Neurocomputing2016190: 82-94.
6 ZHU C X, DASTANI M, WANG S H. A survey of multi-agent reinforcement learning with communication[DB/OL]. arXiv preprint: 2203.08975, 2022.
7 SUKHBAATAR S, SZLAM A, FERGUS R. Learning multiagent communication with backpropagation[DB/OL]. arXiv preprint: 1605.07736, 2016.
8 DING Z L, HUANG T J, LU Z Q. Learning individually inferred communication for multi-agent cooperation[J]. Advances in Neural Information Processing Systems202033: 22069-22079.
9 KIM D, MOON S, HOSTALLERO D, et al. Learning to schedule communication in multi-agent reinforcement learning[DB/OL]. arXiv preprint1902.01554, 2019.
10 JIANG J C, LU Z Q. Learning attentional communication for multi-agent cooperation[DB/OL]. arXiv: , 2018.
11 DAS A, GERVET T, ROMOFF J, et al. TarMAC: Targeted multi-agent communication[C]∥International Conference on Machine Learning, 2019: 1538-1546.
12 SINGH A, JAIN T, SUKHBAATAR S. Learning when to communicate at scale in multiagent cooperative and competitive tasks[DB/OL]. arXiv preprint1812.09755, 2018.
13 HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation19979(8): 1735-1780.
14 WANG T H, WANG J H, ZHENG C Y, et al. Learning nearly decomposable value functions via communication minimization[DB/OL]. arXiv preprint1910.05366, 2019.
15 ZHANG S Q, ZHANG Q, LIN J Y. Efficient communication in multi-agent reinforcement learning via variance based control[DB/OL]. arXiv preprint1909.02682, 2019.
16 ZHANG S Q, LIN J Y, ZHANG Q. Succinct and robust multi-agent communication with temporal message control[J]. Advances in Neural Information Processing Systems202033: 17271-17282.
17 LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[DB/OL]. arXiv preprint: 1706.02275, 2017.
18 MAO H Y, ZHANG Z C, XIAO Z, et al. Learning multi-agent communication with double attentional deep reinforcement learning[J]. Autonomous Agents and Multi-Agent Systems202034(1): 32.
19 NIU Y, PALEJA R, GOMBOLAY M. MAGIC: Multi-agent graph-attention communication[C]∥Mair2 Workshop at International Conference on Computer Vision (ICCV), 2021.
20 MAO H Y, ZHANG Z C, XIAO Z, et al. Learning agent communication under limited bandwidth by message pruning[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, 202034(4): 5142-5149.
21 邹启杰, 汤宇, 高兵, 等. 深度强化学习下的多智能体思考型半多轮通信网络[J/OL]. 控制理论与应用2023: 1-9. (2023-12-14). .
  ZOU Q J, TANG Y, GAO B, et al. The thinking communication network with semi-multiple communication cycles under the multi-agent deep reinforcement learning[J/OL]. Control Theory & Applications2023: 1-9. (2023-12-14). (in Chinese).
22 LAURI M, HSU D, PAJARINEN J. Partially observable Markov decision processes in robotics: A survey[J]. IEEE Transactions on Robotics202339(1): 21-40.
23 MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature2015518: 529-533.
24 CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[DB/OL]. arXiv preprint: 1406.1078, 2014.
25 WEVERS K, LU M. V2X Communication for ITS-from IEEE 802.11 p Towards 5G[J]. IEEE 5G Tech Focus20171(2): 5-10.
26 TISHBY N, ZASLAVSKY N. Deep learning and the information bottleneck principle[C]∥2015 IEEE Information Theory Workshop (ITW). Piscataway: IEEE Press, 2015: 1-5.
27 YANG Y D, HAO J Y, LIAO B, et al. Qatten: A general framework for cooperative multiagent reinforcement learning[DB/OL]. arXiv preprint2002.03939, 2020.
28 BROCKMAN G, CHEUNG V, PETTERSSON L, et al. OpenAI gym[DB/OL]. arXiv preprint: 1606.01540, 2016.
文章导航

/