基于固定时间收敛误差动力学的微分几何制导律设计

  • 白显宗 ,
  • 黎克波 ,
  • 李昊键 ,
  • 董伟
展开
  • 1. 军事科学院国防科技创新研究院
    2. 国防科技大学
    3. 国防科技大学,空天科学学院
    4. 北京理工大学

收稿日期: 2023-10-12

  修回日期: 2024-02-01

  网络出版日期: 2024-02-02

基金资助

国家自然科学基金

Differential Geometric Guidance Law Design based on Fixed-Time Con-vergent Error Dynamic Method

  • BAI Xian-Zong ,
  • LI Ke-Bo ,
  • LI Hao-Jian ,
  • DONG Wei
Expand

Received date: 2023-10-12

  Revised date: 2024-02-01

  Online published: 2024-02-02

Supported by

National Natural Science Foundation of China

摘要

提出了一种具有固定时间收敛特性的微分几何制导律设计方法。首先,提出一种新的固定时间收敛误差动力学方法的控制参数选择机制,将控制参数从4个缩减为3个,并给出更为准确的误差收敛时间上界。其次,针对固定目标打击制导问题,基于古典微分几何曲线原理,将固定时间收敛误差动力学方法拓展至弧长域,提出固定路程收敛微分几何制导律设计方法。然后,分别针对碰撞角控制制导和飞行路程控制制导问题,设计了相应的固定路程收敛微分几何制导律。最后通过数值仿真,对所提方法的有效性进行了验证。

本文引用格式

白显宗 , 黎克波 , 李昊键 , 董伟 . 基于固定时间收敛误差动力学的微分几何制导律设计[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.29712

Abstract

A differential geometric guidance law design method is proposed, which is with a fixed-time-convergent characteristic. Firstly, a new control parameter selection mechanism is presented, for the recently proposed fixed-time convergent error dynamics (FxTED) method. The number of control parameters are reduced from four to three, and a more accu-rate upper-bound of the error settling time is obtained. Secondly, for the guidance law design problem against station-ary targets, based on the classical differential geometric curve theory, the FxTED method is extended to the arc-length domain, and the differential geometry guidance law design method with the property of fixed-range convergence is pro-posed. After that, aiming at the impact-angle-control guidance and flight-range-control guidance problems, two differen-tial geometry guidance laws are respectively designed. Finally, the effectiveness of the proposed method is verified through numerical simulation examples.

参考文献

[1]TYAN F.Capture region of a 3D PPN guidance law for intercepting high-speed targets[J].Asian Journal of Control, 2012, 14(5):1215-1226
[2]LI K B, SHIN H S, TSOURDOS A, et al.Capturability of 3D PPN against lower-speed maneuvering target for homing phase[J].IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1):711-722
[3]LI K B, SHIN H S, Tsourdos A, et al.Performance of 3-D PPN against arbitrarily maneuvering target for hom-ing phase[J].IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5):3878-3891
[4]SHIN H S, LI K B.An improvement in three-dimensional pure proportional navigation guidance[J].IEEE Transactions on Aerospace and Electronic Sys-tems, 2021, 57(5):3004-3014
[5]KIM M, GRIDER K.Terminal Guidance for Impact Attitude Angle Constrained Flight Trajectories[J].IEEE Transactions on Aerospace and Electronic Sys-tems, 1973, AES-9(6):852-859
[6]李晓宝, 赵国荣, 张友安, 等.自适应严格收敛非奇异终端滑模制导律[J].航空学报, 2019, 40(5):251-263
[7]张宽桥, 杨锁昌, 李宝晨, 等.考虑驾驶仪动态特性的固定时间收敛制导律[J].航空学报, 2019, 40(11):259-273
[8]黎克波, 廖选平, 梁彦刚, 等.基于纯比例导引的拦截碰撞角约束制导策略[J].航空学报, 2020, 41(S2):79-88
[9]TEKIN R, ERER K S, HOLZAPFEL F.Impact Time Control with Generalized-Polynomial Range Formula-tion[J].Journal of Guidance, Control, and Dynamics, 2018, 41(5):1190-1195
[10]KIM H G, LEE H.Composite Guidance for Impact Time Control Under Physical Constraints[J].IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2):1096-1108
[11]LEE J I, JEON I S, TAHK M J.Guidance Law to Con-trol Impact Time and Angle[J].IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1):301-310
[12]李斌, 林德福, 何绍溟, 等.基于最优误差动力学的时间角度控制制导律[J].航空学报, 2018, 39(11):157-167
[13]KIM H G, LEE J Y, KIM H J, et al.Look-angle-shaping guidance law for impact angle and time con-trol with field-of-view constraint[J].IEEE Transac-tions on Aer-ospace and Electronic Systems, 2020, 56(2):1602-1612
[14]LEE C H, KIM T H, TAHK M J.Interception angle control guidance using proportional navigation with er-ror feedback[J].Journal of Guidance, Control, and Dy-namics, 2013, 36(5):1556-1561
[15]JEON I S, LEE J I, TAHK M J.Impact-time-control guidance law for anti-ship missiles[J].IEEE Transac-tions on Control Systems Technology, 2006, 14(2):260-266
[16]RYOO C K, CHO H, TAHK M J.Time-to-go weighted optimal guidance with impact angle constraints[J].IEEE Transactions on Control Systems Technology, 2006, 14(3):483-492
[17]WANG C Y, DONG W, WANG J N, et al.Nonlinear suboptimal guidance law with impact angle constraint: an SDRE-based approach[J].IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6):4831-4840
[18]ZHANG Y, TANG S J, GUO J.An adaptive fast fixed-time guidance law with an impact angle constraint for intercepting maneuvering targets[J].Chinese Journal of Aeronautics, 2018, 31(6):1327-1344
[19]KIM H G, CHO D, KIM H J.Sliding mode guidance law for impact time control without explicit time-to-go estimation[J].IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1):236-250
[20]LI X, YE J K, Zhou C J, et al.Prescribed performance guidance law with multiple constraints[J].International Journal of Aerospace Engineering, 2022, 6(27):1-17
[21]ZHOU D, SUN S, Teo K L.Guidance Laws with Finite Time Convergence[J].Journal of Guidance, Control, and Dynamics, 2009, 32(6):1838-1846
[22]BHAT S P, BERNSTEIN D S.Lyapunov analysis of finite-time differential equations[J]., 1995, 3(1):1831-1832
[23]SHEN Y J, XIA X H.Semi-global finite-time observers for nonlinear systems[J].Automatica, 2008, 44(12):3152-3156
[24]SHEN Y J, HUANG Y H.Uniformly observable and globally lipschitzian nonlinear systems admit global finite-time observers[J].IEEE Transactions on Auto-matic Control, 2009, 54(11):2621-2625
[25]SUN Z Y, YUN M M, LI T.A new approach to fast global finite-time stabilization of high-order nonlinear system[J].Automatica, 2017, 81(1):455-463
[26]ZHOU J L, YANG J Y.Guidance Law Design for Im-pact Time Attack Against Moving Targets[J].IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5):2580-2589
[27]ZHANG X J, LIU M Y, LI Y, et al.Impact angle con-trol over composite guidance law based on feedback line-arization and finite time control[J].Journal of Systems Engineering and Electronics, 2018, 29(5):1036-1045
[28]HU Q L, HAN T, XIN M.Sliding-mode impact time guidance law design for various target motions[J].Journal of Guidance, Control, and Dynamics, 2019, 42(1):136-148
[29]ZANG L Y, LIN D F, JI Y.Nonsingular continuous finite-time convergent guidance law with impact angle constraints[J].International Journal of Aerospace Engineering, 2019, 2019(1):1-13
[30]HE S M, Lee C H.Optimality of error dynamics in missile guidance problems[J].Journal of Guidance, Control, and Dynamics, 2018, 41(7):1624-1633
[31]POLYAKOV A.Nonlinear feedback design for fixed-time stabilization of linear control systems[J].IEEE Transactions on Automatic Control, 2012, 57(8):2106-2110
[32]PARSEGOV S E, POLYAKOV A E, SHCHERBAKOV P S.Nonlinear fixed-time control protocol for uniform allocation of agents on a segment[J].Doklady Mathe-matics, 2013, 87(1):133-136
[33]ZUO Z Y, TIAN B L, DEFOORT M, et al.Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics[J].IEEE Transactions on Automatic Control, 2018, 63(2):563-570
[34]ZUO Z Y, HAN Q L, NING B D.Fixed-time coopera-tive control of multi-agent systems[M]. Cham: Spring-er International Publishing, 2019.
[35]WANG C Y, DONG W, WANG J N, et al.Guidance law design with fixed-time convergent error dynam-ics[J].Journal of Guidance, Control, and Dynamics, 2021, 44(7):1389-1398
[36]DONG W, WANG C Y, WANG J N, et al.Three-dimensional nonsingular cooperative guidance law with different field-of-view constraints[J].Journal of Guidance, Control, and Dynamics, 2021, 44(11):2001-2015
[37]DONG W, WANG C Y, WANG J N, et al.Fixed-time terminal angle-constrained cooperative guidance law against maneuvering target[J].IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2):1352-1366
[38]DONG W, WANG C Y, Liu J H, et al.Three-dimensional vector guidance law with impact time and angle constraints[J].Journal of the Franklin Institute, 2023, 360(2):693-718
[39]LU P.Intercept of nonmoving targets at arbitrary time-varying velocity[J].Journal of Guidance, Control, and Dynamics, 1998, 21(1):176-178
[40]LI K B, LIU Y H, LIANG Y G, et al.Performance of PPN Guided Missile with Arbitrary Time-Varying Speed against Stationary Targets: New Findings[J]., 2022, 1(1):1-8
[41]刘远贺, 黎克波, 何绍溟, 等.基于最优误差动力学的变速导弹飞行路程控制制导律[J].航空学报, 2023, 44(7):326909-326909
[42]周文平, 刘奕帆, 宋铁磊.由留数定理求解的两类无穷积分[J].物理与工程, 2022, 32(1):56-59
[43]WANG C Y, DONG W, WANG J N, et al.Impact-angle-constrained cooperative guidance for salvo at-tack[J].Journal of Guidance, Control, and Dynamics, 2022, 45(4):684-703
[44]LEE C H, KIM T H, TAHK M J.Effects of time-to-go errors on performance of optimal guidance laws[J].IEEE Transactions on Aerospace and Electronic Sys-tems, 2015, 51(4):3270-3281
文章导航

/