论文

控制体自由单元法及其在湍流燃烧中的应用

  • 丁金兴 ,
  • 刘华雩 ,
  • 高效伟
展开
  • 大连理工大学 力学与航空航天学院 工业装备结构分析国家重点实验室,大连 116024
.E-mail: xwgao@dlut.edu.cn

收稿日期: 2023-07-29

  修回日期: 2023-09-11

  录用日期: 2024-01-28

  网络出版日期: 2024-02-02

基金资助

国家自然科学基金(12072064)

Control volume free element method and its application in turbulent combustion

  • Jinxing DING ,
  • Huayu LIU ,
  • Xiaowei GAO
Expand
  • State Key Laboratory of Structural Analysis for Industrial Equipment,School of Mechanics and Aerospace Engineering,Dalian University of Technology,Dalian 116024,China
E-mail: xwgao@dlut.edu.cn

Received date: 2023-07-29

  Revised date: 2023-09-11

  Accepted date: 2024-01-28

  Online published: 2024-02-02

Supported by

National Natural Science Foundation of China(12072064)

摘要

采用稳态层流火焰面模型来描述湍流-火焰之间的相互作用,在某种程度上实现了流动和化学反应之间的解耦,能够以较少的计算量比较好地预测多种燃烧现象,非常适合在工程中推广应用。采用自由单元法来克服工程中的复杂几何模型划分网格的难题,自由单元法只需要在计算区域内布置一定数量的散点,用于离散控制方程。分别对层流对撞非预混火焰、二维非预混层流伴流火焰、湍流非预混对撞火焰、燃烧器湍流非预混燃烧进行了数值模拟。将计算结果与参考值进行了对比研究,验证了自由单元法模拟湍流燃烧过程的正确性与有效性。

本文引用格式

丁金兴 , 刘华雩 , 高效伟 . 控制体自由单元法及其在湍流燃烧中的应用[J]. 航空学报, 2024 , 45(11) : 529382 -529382 . DOI: 10.7527/S1000-6893.2024.29382

Abstract

In this study, the steady laminar flamelet model is used to describe turbulence-flame interaction, which realizes the decoupling between the flow and the chemical reaction, is able to predict a variety of combustion phenomena well with less computational effort, and proves suitable for application in engineering. The free element method, which only requires a certain number of points to be arranged in the computational area for discretizing the control equations, is employed to overcome the difficulty of complex geometry in engineering. Numerical simulations of laminar counterflow non-premixed flames, two-dimensional axisymmetric co-flow non-premixed methane-air laminar flame, turbulent counterflow non-premixed flame, and burner turbulent non-premixed flame are conducted, respectively. The computational results are studied in comparison with the references to verify the correctness and effectiveness of the free element method in modeling the turbulent combustion.

参考文献

1 PETERS N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science198410(3): 319-339.
2 CLARAMUNT K, CONSUL R, CARBONELL D, et al. Laminar flamelet concept for laminar and turbulent diffusion flames: AIAA-2004-0796[R]. Reston: AIAA, 2004.
3 CLARAMUNT K, CONSUL R, CARBONELL D, et al. Analysis of the laminar flamelet concept for nonpremixed laminar flames[J]. Combustion and Flame2006145(4): 845-862.
4 LIU F, GUO H, SMALLWOOD G. Evaluation of the laminar diffusion flamelet model in the calculation of an axisymmetric coflow laminar ethylene-air diffusion flame[J]. Combustion and Flame2006144(3): 605-618.
5 CARBONELL D, PEREZSEGARRA C, COELHO P, et al. Flamelet mathematical models for non-premixed laminar combustion[J]. Combustion and Flame2009156(2): 334-347.
6 CòNSUL R, PéREZ-SEGARRA C D, CLARAMUNT K, et al. Detailed numerical simulation of laminar flames by a parallel multiblock algorithm using loosely coupled computers[J]. Combustion Theory and Modelling20037(3): 525-544.
7 CLARAMUNT K. Multidimensional mathematical modeling and numerical investigation of co-flow partially premixed methane/air laminar flames[J]. Combustion and Flame2004137(4): 444-457.
8 BENNETT B A V, MCENALLY C S, PFEFFERLE L D, et al. Computational and experimental study of axisymmetric coflow partially premixed methane/air flames[J]. Combustion and Flame2000123(4): 522-546.
9 LIU G R. An overview on meshfree methods: For computational solid mechanics[J]. International Journal of Computational Methods201613(5): 1630001.
10 ZHANG X, LIU X H, SONG K Z, et al. Least-squares collocation meshless method[J]. International Journal for Numerical Methods in Engineering200151(9): 1089-1100.
11 WANG L H, QIAN Z H, ZHOU Y T, et al. A weighted meshfree collocation method for incompressible flows using radial basis functions[J]. Journal of Computational Physics2020401: 108964.
12 BOURANTAS G C, LOUKOPOULOS V C. A meshless scheme for incompressible fluid flow using a velocity-pressure correction method[J]. Computers & Fluids201388: 189-199.
13 LIU H Y, GAO X W, XU B B. A free element scheme for simulating two- and three-dimensional incompressible fluid flow[J]. International Journal for Numerical Methods in Fluids202193(4): 1163-1182.
14 GAO X W, LIU H Y, CUI M, et al. Free element method and its application in CFD[J]. Engineering Computations201936(8): 2747-2765.
15 LIU H Y, GAO X W, XU B B. An implicit free element method for simulation of compressible flow[J]. Computers & Fluids2019192: 104276.
16 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
17 GOODWIN D, MOFFAT H, SPETH R. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. version 2.2.0[R]. Zenodo, 2015.
18 GAO X W, GAO L F, ZHANG Y, et al. Free element collocation method: A new method combining advantages of finite element and mesh free methods[J]. Computers and Structures2019215(C): 10-26.
19 高效伟, 徐兵兵, 吕军, 等. 自由单元法及其在结构分析中的应用[J]. 力学学报201951(3): 703-713.
  GAO X W, XU B B, Lü J, et al. Free element method and its application in structural analysis[J]. Chinese Journal of Theoretical and Applied Mechanics201951(3): 703-713 (in Chinese).
20 MOUKALLED F, MANGANI L, DARWISH M. The finite volume method in computational fluid dynamics: An advanced introduction with OpenFOAM? and Matlab?[M]. Cham: Springer, 2016.
21 LIU H Y, GAO X W, PAN T. Pressure-velocity coupled zonal free element method for fluid-solid conjugate heat transfer[J]. Engineering Analysis with Boundary Elements2023155: 251-263.
22 SMOOKE M D, MITCHELL R E, KEYES D E. Numerical solution of two-dimensional axisymmetric laminar diffusion flames[J]. Combustion Science and Technology198667(4-6): 85-122.
23 SMITH G P, GOLDEN D M, FRENKLACH M, et al. [EB/OL]. (2023-07-25) [2023-07-29]. .
24 MASTORAKOS E. Turbulent combustion in opposed jet flows[D]. London: Imperial College of Science Technology and Medicine, 1993:156-157
25 KEMPF A, FORKEL H, CHEN J Y, et al. Large-eddy simulation of a counterflow configuration with and without combustion[J]. Proceedings of the Combustion Institute200028(1): 35-40.
文章导航

/